【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)).在以坐標原點為極點,以軸正半軸為極軸建立的極坐標系中,曲線的極坐標方程為,曲線的直角坐標方程為.
(1)求直線的極坐標方程和曲線的直角坐標方程;
(2)若直線與曲線分別相交于異于原點的點,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點,若點在橢圓C上,則點稱為點M的一個“橢點”.
(1)求橢圓C的標準方程;
(2)若直線與橢圓C相交于A,B兩點,且A,B兩點的“橢點”分別為P,Q,以PQ為直徑的圓經(jīng)過坐標原點,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,橢圓C:(a>b>0)離心率為,其短軸長為2.
(1)求橢圓C的標準方程;
(2)如圖,A為橢圓C的左頂點,P,Q為橢圓C上兩動點,直線PO交AQ于E,直線QO交AP于D,直線OP與直線OQ的斜率分別為k1,k2,且k1k2=,(λ,μ為非零實數(shù)),求λ2+μ2的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線的焦點作直線交拋物線于兩點,已知點,為坐標原點.若的最小值為3.
(1)求拋物線的方程;
(2)過點作直線,交拋物線于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《山東省高考改革試點方案》規(guī)定:從年高考開始,高考物理、化學等六門選考科目的考生原始成績從高到低劃分為八個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為.選考科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉換法則分別轉換到八個分數(shù)區(qū)間,得到考生的等級成績.
某校級學生共人,以期末考試成績?yōu)樵汲煽冝D換了本校的等級成績,為學生合理選科提供依據(jù),其中物理成績獲得等級的學生原始成績統(tǒng)計如下
成績 | 93 | 91 | 90 | 88 | 87 | 86 | 85 | 84 | 83 | 82 |
人數(shù) | 1 | 1 | 4 | 2 | 4 | 3 | 3 | 3 | 2 | 7 |
(1)從物理成績獲得等級的學生中任取名,求恰好有名同學的等級分數(shù)不小于的概率;
(2)待到本級學生高考結束后,從全省考生中不放回的隨機抽取學生,直到抽到名同學的物理高考成績等級為或結束(最多抽取人),設抽取的學生個數(shù)為,求隨機變量的數(shù)學期望(注: ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)的部分圖象,將函數(shù)f(x)的圖象向右平移個單位長度得到g(x)的圖象,給出下列四個命題:
①函數(shù)f(x)的表達式為;
②g(x)的一條對稱軸的方程可以為;
③對于實數(shù)m,恒有;
④f(x)+g(x)的最大值為2.其中正確的個數(shù)有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.
(Ⅰ)解不等式f(x)>9;
(Ⅱ)x1∈R,x2∈R,使得f(x1)=g(x2),求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+(a-2)lnx+1(a∈R).
(1)若函數(shù)在點(1,f(1))處的切線平行于直線y=4x+3,求a的值;
(2)令c(x)=f(x)+(3-a)lnx+2a,討論c(x)的單調性;
(3)a=1時,函數(shù)y=f(x)圖象上的所有點都落在區(qū)域內(nèi),求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com