((本小題14分)
已知函數(shù)
(I)若函數(shù)時取得極值,求實數(shù)的值;
(II)試討論函數(shù)的單調(diào)性;

 ()            ……………………………1分
(I)∵函數(shù)時取到極值
解得
經(jīng)檢驗函數(shù)時取到極小值(不檢驗扣1分)
∴實數(shù)的值-2                       …………………………4分
(II)由        …………………………5分
①當(dāng)時,


∴函數(shù)得單調(diào)增區(qū)間為,單調(diào)減區(qū)間為…………7分
②當(dāng)時,,同理可得函數(shù)得單調(diào)增區(qū)間為
單調(diào)減區(qū)間為            ………………………………9分
(II)假設(shè)存在滿足要求的兩點(diǎn)A,B,即在點(diǎn)A、B處的切線都與y軸垂直,則
解得         
∴A,B

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題

(本小題14分)已知函數(shù).
(1)若,點(diǎn)P為曲線上的一個動點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆陜西省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)已知二次函數(shù)滿足:,,且該函數(shù)的最小值為1.

⑴ 求此二次函數(shù)的解析式;

⑵ 若函數(shù)的定義域為= .(其中). 問是否存在這樣的兩個實數(shù),使得函數(shù)的值域也為?若存在,求出的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省協(xié)作體高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)已知函數(shù) 

(Ⅰ)若且函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;

(Ⅱ)如果當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

(Ⅲ)求證:…….

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試卷(實驗班) 題型:解答題

(本小題14分)已知函數(shù)f(x)=,x∈[1,+∞

(1)當(dāng)a=時,求函數(shù)f(x)的最小值

(2)若對任意x∈[1,+∞,f(x)>0恒成立,試求實數(shù)a的取值范圍

(3)求f(x)的最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年福建省四地六校高二下學(xué)期第一次月考數(shù)學(xué)理卷 題型:解答題

(本小題14分)

已知函數(shù).

(Ⅰ)若,求曲線處切線的斜率;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)設(shè),若對任意,均存在,使得,求的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案