【題目】已知?jiǎng)訄A過(guò)點(diǎn),并且與圓:相外切,設(shè)動(dòng)圓的圓心的軌跡為.
(1)求曲線的方程;
(2)過(guò)動(dòng)點(diǎn)作直線與曲線交于兩點(diǎn),當(dāng)為的中點(diǎn)時(shí),求的值;
(3)過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),設(shè)直線:,點(diǎn),直線交于點(diǎn),求證:直線經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
【答案】(1);(2)4;(3)證明見(jiàn)解析,定點(diǎn)的坐標(biāo)為.
【解析】
(1)利用動(dòng)圓經(jīng)過(guò)的點(diǎn)及外切關(guān)系可求;
(2)設(shè)出直線方程,聯(lián)立方程組,結(jié)合中點(diǎn)公式,得到,進(jìn)而可求;
(3)設(shè)出直線方程,聯(lián)立方程組,結(jié)合韋達(dá)定理,證明直線經(jīng)過(guò)定點(diǎn).
(1)設(shè)動(dòng)圓的圓心,半徑為,則由題意可得,即,
因?yàn)?/span>,所以點(diǎn)的軌跡是以為焦點(diǎn)的雙曲線的右支,且,
所以曲線的方程為.
(2)當(dāng)直線的斜率不存在時(shí),,此時(shí);
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,
聯(lián)立得,
,,
.
因?yàn)?/span>為的中點(diǎn),所以,代入曲線方程得;
整理可得;
,
因?yàn)?/span>恰為雙曲線的漸近線,且其中一條漸近線的傾斜角為,
所以,所以.
綜上可得.
(3)證明:當(dāng)直線的斜率不存在時(shí),,,直線經(jīng)過(guò)點(diǎn).
當(dāng)直線的斜率存在時(shí),設(shè)直線,,
直線,當(dāng)時(shí),,
,聯(lián)立得,
,,
下面證明直線經(jīng)過(guò)點(diǎn),即證, ,
把,代入整理得,
即,
所以直線經(jīng)過(guò)點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中, , , 是的中點(diǎn),以為折痕將向上折起, 變?yōu)?/span>,且平面平面.
(Ⅰ)求證: ;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:過(guò)點(diǎn)和點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知是遞增數(shù)列,其前項(xiàng)和為,,且,.
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)是否存在使得成立?若存在,寫(xiě)出一組符合條件的的值;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)設(shè),若對(duì)于任意的,不等式
恒成立,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為拋物線:的焦點(diǎn),過(guò)的動(dòng)直線交拋物線于,兩點(diǎn).當(dāng)直線與軸垂直時(shí),.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線相交于點(diǎn),拋物線上存在點(diǎn)使得直線,,的斜率成等差數(shù)列,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),網(wǎng)上購(gòu)物已經(jīng)成為人們消費(fèi)的一種習(xí)慣.假設(shè)某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價(jià)格 (單位:元/件)之間滿足如下的關(guān)系式:為常數(shù).已知銷售價(jià)格為元/件時(shí),每月可售出千件.
(1)求實(shí)數(shù)的值;
(2)假設(shè)該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數(shù)),試確定銷售價(jià)格的值,使該店每月銷售裝飾品所獲得的利潤(rùn)最大.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 總計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
則下列說(shuō)法正確的是( )
A.有以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
B.有以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com