【題目】正方體的棱上(除去棱AD)到直線與的距離相等的點(diǎn)有個(gè),記這個(gè)點(diǎn)分別為,則直線與平面所成角的正弦值為( )
A. B. C. D.
【答案】D
【解析】
正方體ABCD﹣A1B1C1D1的棱上到直線A1B與CC1的距離相等的點(diǎn)分別為:D1,BC的中點(diǎn),B1C1的四等分點(diǎn)(靠近B1),假設(shè)D1與G重合,BC的中點(diǎn)為E,B1C1的四等分點(diǎn)(靠近B1)為F,以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AC1與平面EFG所成角的正弦值.
解:正方體ABCD﹣A1B1C1D1的棱上到直線A1B與CC1的距離相等的點(diǎn)分別為:
D1,BC的中點(diǎn),B1C1的四等分點(diǎn)(靠近B1),
假設(shè)D1與G重合,BC的中點(diǎn)為E,B1C1的四等分點(diǎn)(靠近B1)為F,
以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,
設(shè)AB=2,則E(1,2,0),F(,2,2),G(0,0,2),A(2,0,0),C1(0,2,2),
∴(),(),(﹣2,2,2),
設(shè)平面EFG的法向量(x,y,z),
則,即,取x=4,得(4,﹣3,﹣1).
設(shè)直線AC1與平面EFG所成角為θ,
則直線AC1與平面EFG所成角的正弦值為sinθ=|cos|.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在湖南師大附中的校園歌手大賽決賽中,有6位參賽選手(1號(hào)至6號(hào))登臺(tái)演出,由現(xiàn)場(chǎng)的100位同學(xué)投票選出最受歡迎的歌手,各位同學(xué)須彼此獨(dú)立地在投票器上選出3位侯選人,其中甲同學(xué)是1號(hào)選手的同班同學(xué),必選1號(hào),另在2號(hào)至6號(hào)選手中隨機(jī)選2名;乙同學(xué)不欣賞2號(hào)選手,必不選2號(hào),在其他5位選手中隨機(jī)選出3名;丙同學(xué)對(duì)6位選手的演唱沒有偏愛,因此在1號(hào)至6號(hào)選手中隨機(jī)選出3名.
(1)求同學(xué)甲選中3號(hào)且同學(xué)乙未選中3號(hào)選手的概率;
(2)設(shè)3號(hào)選手得到甲、乙、丙三位同學(xué)的票數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為–1,證明:l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)的值;
(2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)?/span>與兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ADEF為正方形,AD∥BC,AD⊥AB,AD=2BC=2.
(1)證明:平面ADEF⊥平面ABF.
(2)若平面ADEF⊥平面ABCD,二面角A-BC-E為30°,三棱錐A-BDF的外接球的球心為O,求異面直線OC與DF所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】六人站成一排,求:
(1)甲不在排頭,乙不在排尾的排列數(shù);
(2)甲不在排頭,乙不在排尾,且甲乙不相鄰的排法數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了了解民眾對(duì)開展創(chuàng)建文明城市工作以來的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成,兩組,每組20人,組群眾給第一階段的創(chuàng)文工作評(píng)分,組群眾給第二階段的創(chuàng)文工作評(píng)分,根據(jù)兩組群眾的評(píng)分繪制了如圖所示的莖葉圖.
(Ⅰ)根據(jù)莖葉圖比較群眾對(duì)兩個(gè)階段的創(chuàng)文工作滿意度評(píng)分的平均值和集中程度(不要求計(jì)算出具體值,給出結(jié)論即可);
(Ⅱ)完成下面的列聯(lián)表,并通過計(jì)算判斷是否有的把握認(rèn)為民眾對(duì)兩個(gè)階段創(chuàng)文工作的滿意度存在差異?
低于70分 | 不低于70分 | 合計(jì) | |
第一階段 | |||
第二階段 | |||
合計(jì) |
參考公式:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)若,是否存在整數(shù)使對(duì)任意成立?若存在,求出的最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關(guān)于圓的距離比”.
(1)設(shè)圓求過點(diǎn)P的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(diǎn)A且直線關(guān)于圓C的距離比求出圓C的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com