【題目】某便利店計劃每天購進某品牌鮮奶若干件,便利店每銷售一瓶鮮奶可獲利元;若供大于求,剩余鮮奶全部退回,但每瓶鮮奶虧損元;若供不應(yīng)求,則便利店可從外調(diào)劑,此時每瓶調(diào)劑品可獲利.

(1)若便利店一天購進鮮奶瓶,求當天的利潤單位:元關(guān)于當天鮮奶需求量單位:瓶,的函數(shù)解析式;

(2)便利店記錄了天該鮮奶的日需求量單位:瓶,整理得下表:

日需求量

頻數(shù)

若便利店一天購進瓶該鮮奶,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天利潤在區(qū)間內(nèi)的概率.

【答案】(1)見解析;(2).

【解析】試題分析:(1)當日需求量時,利潤,當日需求量時,,即可得到利潤關(guān)于的函數(shù)解析式;

(2)根據(jù)上表,得到天內(nèi)的需求量,利用古典概型及概率的計算公式,即可求得概率.

試題解析:

(1)當日需求量時,

利潤

當日需求量時,

利潤

∴利潤關(guān)于當天鮮奶需求量的函數(shù)解析式為

日需求量

頻數(shù)

利潤

(2)50天內(nèi)有4天獲利180元,50天內(nèi)有8天獲利220元,50天內(nèi)有10天獲利260元,

50天內(nèi)有14天獲利300元,50天內(nèi)有9天獲利320元,50天內(nèi)有5天獲利340元.

若利潤在內(nèi),日需求量為90,100,110,120其對應(yīng)的頻數(shù)分別為10,14,9,5

則利潤在內(nèi)的概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標準是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標準為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設(shè)甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為,;兩人滑雪時間都不會超過3小時.

(1)求甲、乙兩人所付滑雪費用相同的概率;

(2)設(shè)甲、乙兩人所付的滑雪費用之和為隨機變量ξ,求ξ的分布列與數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究某藥品的療效,選取若干名志愿者進行臨床試驗,所有志愿者的舒張壓數(shù)據(jù)(單位:)的分組區(qū)間為,,,將其按從左到右的順序分別編號為第一組,第二組,,第五組,如圖是根據(jù)試驗數(shù)據(jù)制成的頻率分布直方圖,已知第一組與第二組共有20人,第三組沒有療效的有6人,則第三組中有療效的人數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}的通項公式為 ,求數(shù)列{anbn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別是a,b,c,已知2acosA=-(ccosB+bcosC)。

(1)求角A;

(2)若b=2,且ABC的面積為,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx-)+1(A>0, ω>0)與ω=cosωx的部分圖象如圖所示。

(1)求A,a,b的值及函數(shù)f(x)的遞增區(qū)間;

(2)若函數(shù)y= g(x-m)(m>)與y= f(x)+ f(x-)的圖象的對稱軸完全相同,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,若m<n,且f(m)=f(n),則n﹣m的取值范圍是(
A.[3﹣2ln2,2)
B.[3﹣2ln2,2]
C.[e﹣1,2]
D.[e﹣1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,建立平面直角坐標系 軸在地平面上, 軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標.

(1)求炮的最大射程;

(2)設(shè)在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

同步練習冊答案