某研究小組在一項實驗中獲得一組數(shù)據(jù),將其整理得到如圖所示的散點圖,下列函數(shù)中,最能近似刻畫yt之間關(guān)系的是(   )
A.
B.
C.
D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文)利用獨立性檢驗來考慮兩個分類變量X,Y是否有關(guān)系時,通過查閱前面所給表格斷言“X和Y有關(guān)系”的可信度.如果我們有95%的把握認為“X和Y有關(guān)系”則(    )
A.k6.635B.k5.024C.k3.84D.k2.706

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
某零售店近五個月的銷售額和利潤額資料如下表:
商店名稱
A
B
C
D
E
E
銷售額 (千萬元)
3
5
6
7
9
9
利潤額(百萬元)
2
3
3
4
5
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計算利潤額關(guān)于銷售額的回歸直線方程;
(3)當(dāng)銷售額為4(千萬元)時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,在這兩條
流水線上各抽取40件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量值落在(495,510]
的產(chǎn)品為合格品,否則為不合格品,表1是甲流水線樣本頻數(shù)分布表,圖1是乙流水線樣
本的頻率分布直方圖。
某食
(1)若檢驗員不小心將甲、乙兩條流水線生產(chǎn)的重量值在(510,515]的產(chǎn)品放在了一起,
然后又隨機取出3件產(chǎn)品,求至少有一件是乙流水線生產(chǎn)的產(chǎn)品的概率;
(2)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并回答有多大的把握認為“產(chǎn)品的包裝質(zhì)量
與兩條自動包裝流水線的選擇有關(guān)”。
 
甲流水線
乙流水線
合 計
合格品
a=
b=
 
不合格品
c=
d=
 
合 計
 
 
n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一位母親記錄了兒子3~9歲的身高,由此建立的身高與年齡的回歸模型為=" 7.19" x +73.93. 用這個模型預(yù)測這個孩子10歲時的身高,則正確的敘述是( )
A.身高一定是145.83 cm;B.身高在145.83 cm以上;
C.身高在145.83 cm以下;D.身高在145.83 cm左右.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在一次實驗中,測得(x,y)的四組值分別為(1,2),(2,3),(3,4),(4,5),則y與x的線性回歸方程可能是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下面哪些變量是相關(guān)關(guān)系(     )
A.出租車費與行駛的里程B.房屋面積與房屋價格
C.身高與體重D.鐵的大小與質(zhì)量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲乙丙丁四位同學(xué)各自對兩變量的線性相關(guān)性進行分析,并用回歸分析方法得到相關(guān)系數(shù)與殘差平方和,如右表則哪位同學(xué)的試驗結(jié)果體現(xiàn)兩變量更強的線性相關(guān)性(   )
 














 
A 甲            B 乙          C 丙          D 丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

觀察兩個相關(guān)變量的如下數(shù)據(jù):

-1
-2
-3
-4
-5
5
4
3
2
1

-0.9
-2
-3.1
-3.9
-5.1
5
4.1
2.9
2.1
0.9
則兩個變量間的回歸直線方程為 (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案