關(guān)于直線及平面,下列命題中正確的是(   )

A.若l∥,則l∥m    B.若,m∥,則∥m

C.若l⊥,l∥,則      D.若l∥,m⊥l,則m⊥

 

【答案】

C

【解析】

試題分析:A.若,則異面; B.若,則異面或相交 ;D.若,則在平面內(nèi)或與平面斜交;C是面面垂啊直的判斷方法.故選C.

考點(diǎn):1、線面位置關(guān)系,2、及線面平行與垂直的判定

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
),若直線l過(guò)點(diǎn)P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
),若直線l過(guò)點(diǎn)P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市海門(mén)中學(xué)高三(上)開(kāi)學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓+=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,),若直線l過(guò)點(diǎn)P,且傾斜角為 ,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省南通市海門(mén)中學(xué)高三(上)開(kāi)學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答,解答時(shí)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到2倍,縱坐標(biāo)伸長(zhǎng)到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓+=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸.已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,),若直線l過(guò)點(diǎn)P,且傾斜角為 ,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西省贛州十一縣(市)2010屆下學(xué)期高三期中聯(lián)考(理) 題型:填空題

 在平面上取定一點(diǎn),從出發(fā)引一條射線,再取定一個(gè)長(zhǎng)度單位及計(jì)算

角的正方向,合稱(chēng)為一個(gè)極坐標(biāo)系。這樣,平面上任一點(diǎn)的位置就可以用線段

的長(zhǎng)度以及從的角度來(lái)確定,有序數(shù)對(duì)稱(chēng)為

點(diǎn)的極坐標(biāo),稱(chēng)為點(diǎn)的極徑,稱(chēng)為點(diǎn)的極角。在一個(gè)極坐標(biāo)系下,給出下列命題:

A.點(diǎn)的極徑為4,極角為;B.有序數(shù)對(duì)表示兩個(gè)不同點(diǎn);C.點(diǎn)關(guān)于極點(diǎn)的對(duì)稱(chēng)點(diǎn)為D.圓心在,半徑的圓的極坐標(biāo)方程為;E.過(guò)點(diǎn)垂直極軸的直線方程為.其中真命題序號(hào)是             .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案