對于三次函數(shù)f(x)=ax
3+bx
2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),f″(x)是函數(shù)f(x)的導(dǎo)數(shù),此時,稱f″(x)為原函數(shù)f(x)的二階導(dǎo)數(shù).若二階導(dǎo)數(shù)所對應(yīng)的方程f''(x)=0有實數(shù)解x
0,則稱點(diǎn)(x
0,f(x
0))為函數(shù)f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點(diǎn)”;任何一個三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.
設(shè)三次函數(shù)f(x)=2x
3-3x
2-24x+12請你根據(jù)上面探究結(jié)果,解答以下問題:
①函數(shù)f(x)=2x
3-3x
2-24x+12的對稱中心坐標(biāo)為
;
②計算
f()+f()+f()+…+f()+f()=
-1019
-1019
.