如圖,正方體ABCD-A1B1C1D1的棱長為
3
,以頂點A為球心,2為半徑作一個球,則圖中球面與正方體的表面相交所得到的兩段弧長之和等于( 。
A、
6
B、
3
C、π
D、
6
考點:球內(nèi)接多面體
專題:計算題,空間位置關(guān)系與距離,球
分析:球面與正方體的六個面都相交,所得的交線分為兩類:一類在頂點A所在的三個面上,即面AA1B1B、面ABCD和面AA1D1D上;另一類在不過頂點A的三個面上,即面BB1C1C、面CC1D1D和面A1B1C1D1上.由空間幾何知識能求出這兩段弧的長度之和.
解答: 解:如圖,球面與正方體的六個面都相交,
所得的交線分為兩類:一類在頂點A所在的三個面上,即面AA1B1B、面ABCD和面AA1D1D上;
另一類在不過頂點A的三個面上,即面BB1C1C、面CC1D1D和面A1B1C1D1上.
在面AA1B1B上,交線為弧EF且在過球心A的大圓上,因為AE=2,AA1=
3

則∠A1AE=
π
6
.同理∠BAF=
π
6
,所以∠EAF=
π
6
,
故弧EF的長為:2×
π
6
=
π
3
,
而這樣的弧共有三條.
在面BB1C1C上,交線為弧FG且在距球心為1的平面與球面相交所得的小圓上,
此時,小圓的圓心為B,半徑為1,∠FBG=
π
2
,
所以弧FG的長為:1×
π
2
=
π
2

于是,所得的曲線長為:
π
3
+
π
2
=
6

故選:A.
點評:本題考查空間幾何的性質(zhì)和綜合應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1,截去三個角A-BDA1,C-BDC1,B1-BA1C1后形成的幾何體的體積與原正方體的體積之比值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系內(nèi),到點(1,0)和直線x=-1距離相等的點的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體三個面的面對角線的長度分別為3,3,
14
那么它的外接球的表面積為( 。
A、8πB、16π
C、32πD、64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)2i(1+i)的模是(  )
A、4
B、2
2
C、3
2
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個五位自然
.
a1a2a3a4a5
,ai∈{0,1,2,3,4,5},i=1,2,3,4,5,當(dāng)且僅當(dāng)a1>a2>a3,a3<a4<a5時稱為“凹數(shù)”(如32014,53134等),則滿足條件的五位自然數(shù)中“凹數(shù)”的個數(shù)為( 。
A、110B、137
C、145D、146

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在底面半徑為3,高為4+2
3
的圓柱形有蓋容器內(nèi),放入一個半徑為3的大球后,再放入與球面、圓柱側(cè)面及上底面均相切的小球,則放入小球的個數(shù)最多為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且對任意x>0,都有f′(x)>
f(x)
x

(Ⅰ)判斷函數(shù)F(x)=
f(x)
x
在(0,+∞)上的單調(diào)性;
(Ⅱ)設(shè)x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)請將(Ⅱ)中的結(jié)論推廣到一般形式,并證明你所推廣的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={1,2,3,4,5,6,7,8,9}中任取三個元素構(gòu)成子集{a,b,c}
(1)求a,b,c中任意兩數(shù)之差的絕對值均不小于2的概率;
(2)記a,b,c三個數(shù)中相鄰自然數(shù)的組數(shù)為ξ(如集合{3,4,5}中3和4相鄰,ξ=2),求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

同步練習(xí)冊答案