某保險公司的統(tǒng)計表明,新保險的汽車司機(jī)中可劃分為兩類:第一類人易出事故,其在一年內(nèi)出事故的概率為0.4,第二類人為謹(jǐn)慎的人,其在一年內(nèi)出事故的概率為0.2.假定在新投保的3人中有一人是第一類人,有兩人是第二類人.一年內(nèi)這3人中出現(xiàn)事故的人數(shù)記為ξ.(設(shè)這三人出事故與否互不影響)

(Ⅰ)求三人都不出事故的概率;

(Ⅱ)求ξ的分布列及數(shù)學(xué)期望.

解:(Ⅰ)p=0.6×0.8×0.8=0.384

(Ⅱ)p(ξ=0)=

p(ξ=1)=

p(ξ=2)=

E(ξ=3)=

ξ

0

1

2

3

P

E(ξ)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某保險公司的統(tǒng)計表明,新保險的汽車司機(jī)中可劃分為兩類:第一類人易出事故,其在第一年內(nèi)出事故的概率為0.4,第二類人為謹(jǐn)慎的人,其在第一年內(nèi)出事故的概率為0.2.假定在新投保的3人中有一人是第一類人,2人是第二類人,一年內(nèi)這3人出事故的人數(shù)記為ξ,(這3人出事故相互之間沒有影響)
(1)求3人都不出事故的概率.
(2)求ξ的分布列及其數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天利38套《2008全國各省市高考模擬試題匯編 精華大字版》、數(shù)學(xué)理 題型:044

某保險公司的統(tǒng)計表明,新保險的汽車司機(jī)中可劃分為兩類:第一類人易出事故,其在一年內(nèi)出事故的概率為0.4,第二類人為謹(jǐn)慎的人,其在一年內(nèi)出事故的概率為0.2.假定在新投保的3人中有一人是第一類人,有兩人是第二類人.一年內(nèi)這3人中出現(xiàn)事故的人數(shù)記為ξ.(設(shè)這三人出事故與否互不影響)

(Ⅰ)求三人都不出事故的概率;

(Ⅱ)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某保險公司的統(tǒng)計表明,新保險的汽車司機(jī)中可劃分為兩類:第一類人易出事故,其在第一年內(nèi)出事故的概率為0.4,第二類人為謹(jǐn)慎的人,其在第一年內(nèi)出事故的概率為0.2.假定在新投保的3人中有一人是第一類人,2人是第二類人,一年內(nèi)這3人出事故的人數(shù)記為ξ,(這3人出事故相互之間沒有影響)
(1)求3人都不出事故的概率.
(2)求ξ的分布列及其數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省無錫市高二(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

某保險公司的統(tǒng)計表明,新保險的汽車司機(jī)中可劃分為兩類:第一類人易出事故,其在第一年內(nèi)出事故的概率為0.4,第二類人為謹(jǐn)慎的人,其在第一年內(nèi)出事故的概率為0.2.假定在新投保的3人中有一人是第一類人,2人是第二類人,一年內(nèi)這3人出事故的人數(shù)記為ξ,(這3人出事故相互之間沒有影響)
(1)求3人都不出事故的概率.
(2)求ξ的分布列及其數(shù)學(xué)期望和方差.

查看答案和解析>>

同步練習(xí)冊答案