【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,且將全班人的成績記為由右邊的程序運行后,輸出.據(jù)此解答如下問題:

注:圖中表示“是”,表示“否”

(1)求莖葉圖中破損處分數(shù)在,各區(qū)間段的頻數(shù);

(2)利用頻率分布直方圖估計該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù)分別是多少?

【答案】(1)4(2)眾數(shù)75,中位數(shù)73.5

【解析】分析:(1)由直方圖先求出在之間的頻率及頻數(shù),由程序框圖求出在之間的頻數(shù),用樣本容量相減,可得答案;

(2)計算各段的頻率,進而得到頻率最大的組中值即為眾數(shù),求出頻率的等分線,可得中位數(shù).

詳解:(1)由直方圖知:在[50,60)之間的頻率為0.008×10=0.08,

∴在[50,60)之間的頻數(shù)為2;

由程序框圖知:在[70,80)之間的頻數(shù)為10

所以分數(shù)在[80,90)之間的頻數(shù)為25﹣2﹣7﹣10﹣2=4;

(2)分數(shù)在[50,60)之間的頻率為2/25=0.08;

分數(shù)在[60,70)之間的頻率為7/25=0.28;

分數(shù)在[70,80)之間的頻率為10/25=0.40;

分數(shù)在[80,90)之間的頻率為4/25=0.16;

分數(shù)在[90,100]之間的頻率為2/25=0.08;

估計該班的測試成績的眾數(shù)75…

設(shè)中位數(shù)為x,則0.08+0.28+0.04(x﹣70)=0.5,

解得x=73.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游艇制造廠研發(fā)了一種新游艇,今年前5個月的產(chǎn)量如下:

(1)設(shè)關(guān)于的回歸直線方程為現(xiàn)根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出了的值為,試求的值,并估計該廠月份的產(chǎn)量;(計算結(jié)果精確到

(Ⅱ)質(zhì)檢部門發(fā)現(xiàn)該廠月份生產(chǎn)的游艇都存在質(zhì)量問題,要求廠家召回;現(xiàn)有一旅游公司曾向該廠購買了今年前兩個月生產(chǎn)的游艇艘,求該旅游公司有游艇被召回的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD,PC⊥底面ABCDADBC,AD=2BC=2,PC=2,ABC是以AC為斜邊的等腰直角三角形,EPD的中點.

(1)求證:平面EAC⊥平面PCD;

(2)求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了及時向群眾宣傳“十九大”黨和國家“鄉(xiāng)村振興”戰(zhàn)略,需要尋找一個宣講站,讓群眾能在最短的時間內(nèi)到宣講站.設(shè)有三個鄉(xiāng)鎮(zhèn),分別位于一個矩形的兩個頂點的中點處,,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與等距離的一點處設(shè)一個宣講站,記點到三個鄉(xiāng)鎮(zhèn)的距離之和為

(Ⅰ)設(shè),將表示為的函數(shù);

(Ⅱ)試利用(Ⅰ)的函數(shù)關(guān)系式確定宣講站的位置,使宣講站到三個鄉(xiāng)鎮(zhèn)的距離之和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由經(jīng)驗得知,在某商場付款處排隊等候付款的人數(shù)及概率如表:

排隊人數(shù)

人以上

概率

(1)至多有人排隊的概率是多少?

(2)至少有人排隊的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運行如下程序框圖,如果輸入的t∈[0,5],則輸出S屬于(
A.[﹣4,10)
B.[﹣5,2]
C.[﹣4,3]
D.[﹣2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,,,(), , .

(I)求;

(Ⅱ)猜想數(shù)列的通項公式,并證明;

(Ⅲ)設(shè)函數(shù),若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,點P(0, ),以原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為 .直線l的參數(shù)方程為 為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標方程和直線l的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個交點分別為A,B,求 + 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 ,命題 ,若 的必要不充分條件,則實數(shù) 的取值范圍是 .

查看答案和解析>>

同步練習(xí)冊答案