【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進(jìn)行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的“特殊”狀況;如圖所示,已知三個發(fā)射臺分別為,,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據(jù)船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,根據(jù)船接收到臺和臺電磁波的時間差,計算出船到發(fā)射臺的距離比到發(fā)射臺的距離遠(yuǎn)30海里,則點的坐標(biāo)(單位:海里)為( )
A.B.
C.D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,單位圓上有一點,點以點為起點按逆時針方向以每秒弧度作圓周運動,點的縱坐標(biāo)是關(guān)于時間的函數(shù),記作.
(1)當(dāng)時,求;
(2)若將函數(shù)向左平移個單位長度后,得到的曲線關(guān)于軸對稱,求的最小正值,并求此時在的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底而為菱形,且菱形所在的平面與所在的平面相互垂直,,,,.
(1)求證:平面;
(2)求四棱錐的最長側(cè)棱的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中,,)的圖象的兩條相鄰對稱軸之間的距離為,且圖象上一個最低點為.
(1)求函數(shù)的解析式;
(2)當(dāng)時,求函數(shù)的值域;
(3)若方程在上有兩個不相等的實數(shù)根,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線定位法是通過測定待定點到至少三個已知點的兩個距離差所進(jìn)行的一種無線電定位.通過船(待定點)接收到三個發(fā)射臺的電磁波的時間差計算出距離差,兩個距離差即可形成兩條位置雙曲線,兩者相交便可確定船位.我們來看一種簡單的“特殊”狀況;如圖所示,已知三個發(fā)射臺分別為,,且剛好三點共線,已知海里,海里,現(xiàn)以的中點為原點,所在直線為軸建系.現(xiàn)根據(jù)船接收到點與點發(fā)出的電磁波的時間差計算出距離差,得知船在雙曲線的左支上,若船上接到臺發(fā)射的電磁波比臺電磁波早(已知電磁波在空氣中的傳播速度約為,1海里),則點的坐標(biāo)(單位:海里)為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),其中.
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)求零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)在一次考試后,從全體考生中隨機(jī)抽取44名,獲取他們本次考試的數(shù)學(xué)成績(x)和物理成績(y),繪制成如圖散點圖:
根據(jù)散點圖可以看出y與x之間有線性相關(guān)關(guān)系,但圖中有兩個異常點A,B.經(jīng)調(diào)查得知,A考生由于重感冒導(dǎo)致物理考試發(fā)揮失常,B考生因故未能參加物理考試.為了使分析結(jié)果更科學(xué)準(zhǔn)確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計的值:其中xi,yi分別表示這42名同學(xué)的數(shù)學(xué)成績、物理成績,i=1,2,…,42,y與x的相關(guān)系數(shù)r=0.82.
(1)若不剔除A,B兩名考生的數(shù)據(jù),用44組數(shù)據(jù)作回歸分析,設(shè)此時y與x的相關(guān)系數(shù)為r0.試判斷r0與r的大小關(guān)系,并說明理由;
(2)求y關(guān)于x的線性回歸方程(系數(shù)精確到0.01),并估計如果B考生加了這次物理考試(已知B考生的數(shù)學(xué)成績?yōu)?/span>125分),物理成績是多少?(精確到個位);
(3)從概率統(tǒng)計規(guī)律看,本次考試該地區(qū)的物理成績ξ服從正態(tài)分布,以剔除后的物理成績作為樣本,用樣本平均數(shù)作為μ的估計值,用樣本方差s2作為σ2的估計值.試求該地區(qū)5000名考生中,物理成績位于區(qū)間(62.8,85.2)的人數(shù)Z的數(shù)學(xué)期望.
附:①回歸方程中:
②若,則
③11.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種質(zhì)地均勻的正四面體玩具的4個面上分別標(biāo)有數(shù)字0,1,2,3,將這個玩具拋擲次,記第次拋擲后玩具與桌面接觸的面上所標(biāo)的數(shù)字為,數(shù)列的前和為.記是3的倍數(shù)的概率為.
(1)求,;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(a為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點,l和C交于A,B兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com