【題目】一元二次不等式x2+ax+b>0的解集為x∈(﹣∞,﹣3)∪(1,+∞),則一元一次不等式ax+b<0的解集為

【答案】
【解析】解:∵一元二次不等式x2+ax+b>0的解集為x∈(﹣∞,﹣3)∪(1,+∞), ∴﹣3,1是一元二次方程式x2+ax+b=0的兩個(gè)實(shí)數(shù)根,
∴﹣3+1=﹣a,﹣3×1=b,
解得a=2,b=﹣3.
∴一元一次不等式ax+b<0即2x﹣3<0,解得
∴一元一次不等式ax+b<0的解集為
所以答案是:
【考點(diǎn)精析】關(guān)于本題考查的解一元二次不等式,需要了解求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a+a1= (a>1)
(1)求下列各式的值:
(Ⅰ)a +a
(Ⅱ)a +a ;
(2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準(zhǔn)”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實(shí)施一段時(shí)間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查卷共有10個(gè)問題,每個(gè)問題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組: , , , ,并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).

1)求樣本容量和頻率分布直方圖中的的值;

2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行座談會(huì),求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 是坐標(biāo)原點(diǎn), 分別為其左右焦點(diǎn), , 是橢圓上一點(diǎn), 的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于兩點(diǎn),且

(i)求證: 為定值;

(ii)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)國務(wù)院批復(fù)同意,重慶成功入圍國家中心城市,某校學(xué)生社團(tuán)針對(duì)“重慶的發(fā)展環(huán)境”對(duì)20名學(xué)生進(jìn)行問卷調(diào)查打分(滿分100分),得到如圖所示莖葉圖:

(Ⅰ)計(jì)算女生打分的平均分,并用莖葉圖的數(shù)字特征評(píng)價(jià)男生、女生打分誰更分散;

(Ⅱ)如圖按照打分區(qū)間、、繪制的直方圖中,求最高矩形的高

(Ⅲ)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x>0,y>0,且x+y=1,求:
(1)x2+y2的最小值;
(2) + + 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=3,a5=15,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}(n∈N+)是等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線交曲線兩點(diǎn),當(dāng),且位于直線的兩側(cè)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , ,點(diǎn)上,且

(Ⅰ)已知點(diǎn)上,且,求證:平面平面;

(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線與平面所成的角為?

查看答案和解析>>

同步練習(xí)冊(cè)答案