【題目】艾薩克牛頓(1643年1月4日﹣1727年3月31日)英國(guó)皇家學(xué)會(huì)會(huì)長(zhǎng),英國(guó)著名物理學(xué)家,同時(shí)在數(shù)學(xué)上也有許多杰出貢獻(xiàn),牛頓用“作切線”的方法求函數(shù)f(x)零點(diǎn)時(shí)給出一個(gè)數(shù)列{xn}:滿足 ,我們把該數(shù)列稱為牛頓數(shù)列.如果函數(shù)f(x)=ax2+bx+c(a>0)有兩個(gè)零點(diǎn)1,2,數(shù)列{xn}為牛頓數(shù)列,設(shè) ,已知a1=2,xn>2,則{an}的通項(xiàng)公式an=

【答案】2n
【解析】解:∵函數(shù)f(x)=ax2+bx+c(a>0)有兩個(gè)零點(diǎn)1,2, ∴ ,解得:
∴f(x)=ax2﹣3ax+2a.
則f′(x)=2ax﹣3a.
= = ,
,
是以2為公比的等比數(shù)列,
,且a1=2,
∴數(shù)列{an}是以2為首項(xiàng),以2為公比的等比數(shù)列,
,
所以答案是:2n
【考點(diǎn)精析】掌握數(shù)列的通項(xiàng)公式是解答本題的根本,需要知道如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}滿足a1=1,an+an+1=( n(n∈N*),Sn=a1+4a2+42a3+…+4n1an , 則5Sn﹣4nan=(
A.n﹣1
B.n
C.2n
D.n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)所示,在直角梯形ABCD中, ,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣3x+1,x∈[﹣2,2]的最大值為M,最小值為m,則M+m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知U=R,M={x|﹣l≤x≤2},N={x|x≤3},則(UM)∩N=(
A.{x|2≤x≤3}
B.{x|2<x≤3}
C.{x|x≤﹣1,或2≤x≤3}
D.{x|x<﹣1,或2<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓E: ,點(diǎn)P(0,1)在短軸CD上,且
(Ⅰ) 求橢圓E的方程及離心率;
(Ⅱ) 設(shè)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)P的動(dòng)直線與橢圓交于A,B兩點(diǎn).是否存在常數(shù)λ,使得 為定值?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若a1=1,對(duì)任意的n∈N* , 都有an>0,且nan+12﹣(2n﹣1)an+1an﹣2an2=0設(shè)M(x)表示整數(shù)x的個(gè)位數(shù)字,則M(a2017)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣2|+2x﹣3,記f(x)≤﹣1的解集為M.
(Ⅰ)求M;
(Ⅱ)當(dāng)x∈M時(shí),證明:x[f(x)]2﹣x2f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)已知實(shí)數(shù)a,b滿足|a|<2,|b|<2,證明:2|a+b|<|4+ab|;
(2)已知a>0,求證: ≥a+ ﹣2.

查看答案和解析>>

同步練習(xí)冊(cè)答案