【題目】在平面直角坐標(biāo)系中,橢圓的離心率為,直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)過原點(diǎn)的直線與橢圓交于兩點(diǎn)(不是橢圓的頂點(diǎn)),點(diǎn)在橢圓上,且,直線與軸軸分別交于兩點(diǎn).
①設(shè)直線斜率分別為,證明存在常數(shù)使得,并求出的值;
②求面積的最大值.
【答案】(1).
(2) ①證明見解析,;②.
【解析】試題分析:(1)首先由題意得到,即.
將代入可得,
由,可得.得解.
(2)(ⅰ)注意從確定的表達(dá)式入手,探求使成立的.
設(shè),則,
得到,
根據(jù)直線BD的方程為,
令,得,即.得到.
由,作出結(jié)論.
(ⅱ)直線BD的方程,
從確定的面積表達(dá)式入手,應(yīng)用基本不等式得解.
試題解析:(1)由題意知,可得.
橢圓C的方程可化簡為.
將代入可得,
因此,可得.
因此,
所以橢圓C的方程為.
(2)(ⅰ)設(shè),則,
因?yàn)橹本AB的斜率,
又,所以直線AD的斜率,
設(shè)直線AD的方程為,
由題意知,
由,可得.
所以,
因此,
由題意知,
所以,
所以直線BD的方程為,
令,得,即.
可得.
所以,即.
因此存在常數(shù)使得結(jié)論成立.
(ⅱ)直線BD的方程,
令,得,即,
由(ⅰ)知,
可得的面積,
因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)等號成立,
此時(shí)S取得最大值,
所以的面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AP恒過定點(diǎn),且與直線相切.
(Ⅰ)求動圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點(diǎn)C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x-1|.
(1)當(dāng)m=-1時(shí),求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是坐標(biāo)原點(diǎn),過的直線分別交拋物線于、兩點(diǎn),直線與過點(diǎn)平行于軸的直線相交于點(diǎn),過點(diǎn)與此拋物線相切的直線與直線相交于點(diǎn).則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何是美籍法國數(shù)學(xué)家芒德勃羅在20世紀(jì)70年代創(chuàng)立的一門數(shù)學(xué)新分支,其中的“謝爾賓斯基”圖形的作法是:先作一個(gè)正三角形,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的每個(gè)小正三角形中又挖去一個(gè)“中心三角形”.按上述方法無限連續(xù)地作下去直到無窮,最終所得的極限圖形稱為“謝爾賓斯基”圖形(如圖所示),按上述操作7次后,“謝爾賓斯基”圖形中的小正三角形的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),對任意,都有.
討論的單調(diào)性;
當(dāng)存在三個(gè)不同的零點(diǎn)時(shí),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3﹣ax﹣xlnx.其中a∈R.
(Ⅰ)若,證明:f(x)≥0;
(Ⅱ)若xe1﹣x≥1﹣f(x)在x∈(1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com