已知命題p:x2-mx+1=0有兩個實根,q:函數(shù)y=x2+mx+n在[1,+∞)上為增函數(shù),若命題pq為真命題.求實數(shù)m的取值范圍.

解析:∵pq為真命題,∴p,q均為真命題.?

解得m=-2或m≥2,所求實數(shù)m的取值范圍是{-2}∪{m|m≥2}.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

9、已知命題p:?m∈R,m+1≤0,命題q:?x∈R,x2+mx+1>0恒成立、若p∧q為假命題,則實數(shù)m的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、已知命題p:m+2<0,命題q:方程x2+mx+1=0無實數(shù)根.若“?p”為假,“p∧q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:m∈R,且m+1≤0,命題q:?x∈R,x2+mx+1>0恒成立,若p∧q為假命題且p∨q為真命題,則m的取值范圍是
m≤-2或-1<m<2
m≤-2或-1<m<2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?m∈R,sinm=
5
3
,命題q:?x∈R,x2+mx+1>0恒成立.若p∧q為假命題,則實數(shù)m的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?m∈R,m+1≤0,命題q:?x∈R,x2+mx+1>0恒成立.若p∧q為假命題,p∨q為真命題,則實數(shù)m的取值范圍為(  )

查看答案和解析>>

同步練習冊答案