解:(Ⅰ)當(dāng)a=1時(shí),f′(x)=2x-3+
=
=
,…2分
當(dāng)0<x
時(shí),f′(x)>0;當(dāng)
<x<1時(shí),f′(x)<0;當(dāng)x>1時(shí),f′(x)>0.
所以當(dāng)x=1時(shí),函數(shù)f(x)取極小值f(1)=-2,…5分;
(Ⅱ)當(dāng)a=-1時(shí),f′(x)=2x-1-
(x>0),所以切線的斜率
k=2m-1-
=
=
=
,整理可得m
2+lnm-1=0,
顯然m=1是方程的解,又因?yàn)楹瘮?shù)y=x
2+lnx-1在(0,+∞)上是增函數(shù),
所以方程有唯一的實(shí)數(shù)解,即m=1,…10分;
(Ⅲ)當(dāng)a=8時(shí),函數(shù)y=f(x)在其圖象上一點(diǎn)P(x
0,y
0)處的切線方程為:
h(x)=
,
設(shè)F(x)=f(x)-h(x),則F(x
0)=0,F(xiàn)′(x)=f′(x)-h′(x)
=(
)-(
)=
(x-x
0)(x-
)
若0<x
0<2,F(xiàn)(x)在(x
0,
)上單調(diào)遞減,所以當(dāng)x∈(x
0,
)時(shí),
F(x)<F(x
0)=0,此時(shí)
<0,
若x
0>2,F(xiàn)(x)在(
,x
0)上單調(diào)遞減,所以當(dāng)x∈(
,x
0)時(shí),
F(x)>F(x
0)=0,此時(shí)
<0,
所以y=f(x)在(0,2)和(2,+∞)上不存在“轉(zhuǎn)點(diǎn)”,
若x
0=2時(shí),F(xiàn)′(x)=
,即F(x)在(0,+∞)上是增函數(shù),
當(dāng)x>x
0時(shí),F(xiàn)(x)>F(x
0)=0,當(dāng)x<x
0時(shí),F(xiàn)(x)<F(x
0)=0,
故點(diǎn)P(x
0,f(x
0))為“轉(zhuǎn)點(diǎn)”,
故函數(shù)y=f(x)存在“轉(zhuǎn)點(diǎn)”,且2是“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),…15分
分析:(Ⅰ)把a(bǔ)=1代入可得函數(shù)的導(dǎo)數(shù),進(jìn)而可得單調(diào)區(qū)間,可得極小值;
(Ⅱ)把a(bǔ)=-1代入,可得切線斜率,由斜率公式還可得斜率,由等式可得m=1是唯一的實(shí)數(shù)解;
(Ⅲ)針對新定義,構(gòu)造函數(shù)F(x)=f(x)-h(x),求其導(dǎo)數(shù),分0<x
0<2,x
0>2,x
0=2三種情況進(jìn)行討論,可得結(jié)論.
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,涉及新定義,屬中檔題.