【題目】已知圓,過點作直線交圓于兩點,分別過兩點作圓的切線,當(dāng)兩條切線相交于點時,則點的軌跡方程為__________.
【答案】
【解析】考慮如下問題:已知C:x2+y2=r2(r>0)和點P(a,b).若點P在C內(nèi),過P作直線l交C于A. B兩點,分別過A. B兩點作C的切線,當(dāng)兩條切線相交于點Q時,求點Q的軌跡方程.
圓C:x2+y2=r2的圓心C為(0,0),
設(shè)A(x1,y1),B(x2,y2),Q(x0,y0),
因為AQ與圓C相切,所以AQ⊥CA.
所以(x1x0)(x10)+(y1y0)(y10)=0,
即x21x0x1+y21y0y1=0,
因為x21+y21=r2,
所以x0x1+y0y1=r2,
同理x0x2+y0y2=r2.
所以過點A,B的直線方程為xx0+yy0=r2.
因直線AB過點(a,b).
所以代入得ax0+by0=r2,
所以點Q的軌跡方程為:ax+by=r2.
結(jié)合題意可知,點的軌跡方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求函數(shù)的零點個數(shù);
(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺中, 與分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , , 為中點, (, ).
(1)設(shè)中點為, ,求證: 平面;
(2)若到平面的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與圓 且與橢圓相交于兩點.
(1)若直線恰好經(jīng)過橢圓的左頂點,求弦長
(2)設(shè)直線的斜率分別為,判斷是否為定值,并說明理由
(3)求,面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , , 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值(精確到0.01),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD、ADEF為正方形,G,H是DF,F(xiàn)C的中點.
(1)求證:GH∥平面CDE;
(2)求證:BC⊥平面CDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點P(﹣3,﹣4)作直線l,當(dāng)l的斜率為何值時
(1)l將圓(x﹣1)2+(y+2)2=4平分?
(2)l與圓(x﹣1)2+(y+2)2=4相切?
(3)l與圓(x﹣1)2+(y+2)2=4相交且所截得弦長=2?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 3 | 0 |
(1)請將上表空格中的數(shù)據(jù)在答卷的相應(yīng)位置上,并求函數(shù)f(x)的解析式;
(2)若y=f(x)的圖象上所有點向左平移 個單位后對應(yīng)的函數(shù)為g(x),求當(dāng)x∈[﹣ , ]時,函數(shù)y=g(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com