【題目】 【2017四川宜賓二診】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知點(diǎn),曲線(xiàn)的參數(shù)方程為.以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.
(Ⅰ)判斷點(diǎn)與直線(xiàn)的位置關(guān)系并說(shuō)明理由;
(Ⅱ)設(shè)直線(xiàn)與曲線(xiàn)的兩個(gè)交點(diǎn)分別為,求的值.
【答案】(Ⅰ)點(diǎn)在直線(xiàn)上;(Ⅱ)
【解析】試題分析:(Ⅰ)直線(xiàn) ,亦即,得直線(xiàn)的直角坐標(biāo)方程為,即可得到結(jié)論;
(Ⅱ)由題意,將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通方程,得,得,再由,即可求解.
試題解析:
(Ⅰ)點(diǎn)在直線(xiàn)上,理由如下:
直線(xiàn) ,即,亦即, 直線(xiàn)的直角坐標(biāo)方程為,易知點(diǎn)在直線(xiàn)上.
(Ⅱ)由題意,可得直線(xiàn)的參數(shù)方程為,曲線(xiàn)的普通方程為.將直線(xiàn)的參數(shù)方程代入曲線(xiàn)的普通方程,得, ,設(shè)兩根為, , , ,故與異號(hào), ,
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2012年“雙節(jié)”期間,高速公路車(chē)輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車(chē)中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢(xún)問(wèn)調(diào)查,將他們?cè)谀扯胃咚俟返能?chē)速(km/t)分成六段:(60,65),[65,70),[70,75),[80,85),[85,90)后得到如圖的頻率分布直方圖.
(1)某調(diào)查公司在采樣中,用到的是什么抽樣方法?
(2)求這40輛小型車(chē)輛車(chē)速的眾數(shù)和中位數(shù)的估計(jì)值.
(3)若從車(chē)速在[60,70)的車(chē)輛中任抽取2輛,求車(chē)速在[65,70)的車(chē)輛至少有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2﹣(a+1)x+1.
(1)若不等式f(x)<mx的解集為{x|1<x<2},求實(shí)數(shù)a、m的值;
(2)解不等式f(x)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從高三學(xué)生中抽取50名同學(xué)參加數(shù)學(xué)競(jìng)賽,成績(jī)的分組及各組的頻數(shù)如下(單位:分):
[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.
(1)列出樣本的頻率分布表;
(2)畫(huà)出頻率分布直方圖和頻率分布折線(xiàn)圖;
(3)估計(jì)成績(jī)?cè)赱60,90)分的學(xué)生比例;
(4)估計(jì)成績(jī)?cè)?5分以下的學(xué)生比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(﹣2,0),點(diǎn)B(2, )在橢圓C上,直線(xiàn)y=kx(k≠0)與橢圓C交于E,F(xiàn)兩點(diǎn),直線(xiàn)AE,AF分別與y軸交于點(diǎn)M,N
(Ⅰ)求橢圓C的方程;
(Ⅱ)在x軸上是否存在點(diǎn)P,使得無(wú)論非零實(shí)數(shù)k怎樣變化,總有∠MPN為直角?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E,F(xiàn)為CD上任意兩點(diǎn),且EF的長(zhǎng)為定值b,則下面的四個(gè)值中不為定值的是( )
A.點(diǎn)P到平面QEF的距離
B.三棱錐P﹣QEF的體積
C.直線(xiàn)PQ與平面PEF所成的角
D.二面角P﹣EF﹣Q的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃在今年內(nèi)同時(shí)出售變頻空調(diào)機(jī)和智能洗衣機(jī),由于這兩種產(chǎn)品的市場(chǎng)需求量非常大,有多少就能銷(xiāo)售多少,因此該公司要根據(jù)實(shí)際情況(如資金、勞動(dòng)力)確定產(chǎn)品的月供應(yīng)量,以使得總利潤(rùn)達(dá)到最大.已知對(duì)這兩種產(chǎn)品有直接限制的因素是資金和勞動(dòng)力,通過(guò)調(diào)查,得到關(guān)于這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如表:
試問(wèn):怎樣確定兩種貨物的月供應(yīng)量,才能使總利潤(rùn)達(dá)到最大,最大利潤(rùn)是多少?
資金 | 單位產(chǎn)品所需資金(百元) | ||
空調(diào)機(jī) | 洗衣機(jī) | 月資金供應(yīng)量(百元) | |
成本 | 30 | 20 | 300 |
勞動(dòng)力(工資) | 5 | 10 | 110 |
單位利潤(rùn) | 6 | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= ,SA=SC=2,二面角S﹣AC﹣B的余弦值是 ,若S、A、B、C都在同一球面上,則該球的表面積是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地要經(jīng)過(guò)3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設(shè)表示一輛車(chē)從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車(chē)獨(dú)立地從甲地到乙地,求這2輛車(chē)共遇到1個(gè)紅燈的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com