20.(本小題共13分)
對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列,定義變換,將數(shù)列變換成數(shù)列
.
對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列,定義變換,將數(shù)列各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列;
又定義.
設(shè)是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令.
(Ⅰ)如果數(shù)列為5,3,2,寫出數(shù)列;
(Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列,證明;
(Ⅲ)證明對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列,存在正整數(shù),當(dāng)時(shí),.
(Ⅰ),;(Ⅱ)略;(Ⅲ)略。
(Ⅰ),
,
;
,
.
(Ⅱ)證明設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列為,
則為,,,,,
從而
.
又,
所以
,
故.
(Ⅲ)證明設(shè)是每項(xiàng)均為非負(fù)整數(shù)的數(shù)列.
當(dāng)存在,使得時(shí),交換數(shù)列的第項(xiàng)與第項(xiàng)得到數(shù)列,
則.
當(dāng)存在,使得時(shí),若記數(shù)列為,
則.
所以.
從而對(duì)于任意給定的數(shù)列,由
可知.
又由(Ⅱ)可知,所以.
即對(duì)于,要么有,要么有.
因?yàn)?img width=42 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/42/234642.gif">是大于2的整數(shù),所以經(jīng)過有限步后,必有.
即存在正整數(shù),當(dāng)時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共13分)
已知函數(shù)
(I)若x=1為的極值點(diǎn),求a的值;
(II)若的圖象在點(diǎn)(1,)處的切線方程為,
(i)求在區(qū)間[-2,4]上的最大值;
(ii)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆北京市豐臺(tái)區(qū)高三年級(jí)第二學(xué)期統(tǒng)一練習(xí)理科數(shù)學(xué) 題型:解答題
(本小題共13分)
已知函數(shù).
(Ⅰ)若在處取得極值,求a的值;
(Ⅱ)求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共13分)
已知向量,設(shè)函數(shù).
(Ⅰ)求函數(shù)在上的單調(diào)遞增區(qū)間;
(Ⅱ)在中,,,分別是角,,的對(duì)邊,為銳角,若,,的面積為,求邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市豐臺(tái)區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共13分)
某商場在店慶日進(jìn)行抽獎(jiǎng)促銷活動(dòng),當(dāng)日在該店消費(fèi)的顧客可參加抽獎(jiǎng).抽獎(jiǎng)箱中有大小完全相同的4個(gè)小球,分別標(biāo)有字“生”“意”“興”“隆”.顧客從中任意取出1個(gè)球,記下上面的字后放回箱中,再從中任取1個(gè)球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎(jiǎng)規(guī)則如下:依次取到標(biāo)有“生”“意”“興”“隆”字的球?yàn)橐坏泉?jiǎng);不分順序取到標(biāo)有“生”“意”“興”“隆”字的球,為二等獎(jiǎng);取到的4個(gè)球中有標(biāo)有“生”“意”“興”三個(gè)字的球?yàn)槿泉?jiǎng).
(Ⅰ)求分別獲得一、二、三等獎(jiǎng)的概率;
(Ⅱ)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(xué)(文)試題 題型:解答題
(本小題共13分)
已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)的最小正周期及圖象的對(duì)稱軸方程式;
(II)當(dāng)a=2時(shí),在的條件下,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com