設(shè)數(shù)列{an}的前n項(xiàng)和sn=na+n(n-1)b,=1,2,3…),a,b是常數(shù)且b≠0.

(1)證明:{an}是等差數(shù)列;

(2)證明:以(an,-1)為坐標(biāo)的點(diǎn)pn(n=1,2,3…)都落在同一條直線上,并寫出此直線的方程;

(3)設(shè)a=1,b=,C是以(r,r)為圓心,r為半徑的圓(r>0),求使得點(diǎn)p1,p2,p3都落在圓C外時(shí),r的取值范圍.

答案:
解析:

  (1)證明:由條件得,當(dāng)時(shí),

  有,

  則,. 2分

  因此,當(dāng)時(shí),有

  所以是以為首項(xiàng),為公差的等差數(shù)列. 2分

  (2)證明:,對(duì)于

  有 2分

  所以,所有的點(diǎn)()都落在通過且以為斜率的直線上.此直線方程為,即. 2分

  (3)解:當(dāng)a=1,b=時(shí),的坐標(biāo)為,使、、都落在圓C外的條件是

  

  即 2分

  由上面不等式組以及解得的取值范圍是. 2分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案