【題目】如圖,在四棱錐中, 平面, ,,,,是線段的中點(diǎn).
(1)證明:平面
(2)當(dāng)為何值時(shí),四棱錐的體積最大?并求此最大值
【答案】(1)見解析(2)當(dāng)PA=4時(shí),體積最大值為16.
【解析】
(1)取PD中點(diǎn)N,易證MNCB為平行四邊形,進(jìn)而得BM,CN平行,得證;
(2)設(shè)PA=x(0),把體積表示為關(guān)于x的函數(shù),借助不等式求得最大值.
(1)取PD中點(diǎn)N,連接MN,CN,
∵M是AP的中點(diǎn),
∴MN∥AD且MN,
∵AD∥BC,AD=2BC,
∴MN∥BC,MN=BC,
∴四邊形MNCB是平行四邊形,
∴MB∥CN,
又BM平面PCD,CN平面PCD,
∴BM∥平面PCD;
(2)設(shè)PA=x(0<x<4),
∵PA⊥平面ABCD,
∴PA⊥AB,
∵,
∴AB,
又∵AB⊥AD,AD=2BC=4,
∴VP﹣ABCD
=16,
當(dāng)且僅當(dāng)x,即x=4時(shí)取等號(hào),
故當(dāng)PA=4時(shí),四棱錐P﹣ABCD的體積最大,最大值為16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(其中為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線普通方程和曲線的直角坐標(biāo)方程;
(2)過(guò)點(diǎn),且與直線平行的直線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近期中央電視臺(tái)播出的《中國(guó)詩(shī)詞大會(huì)》火遍全國(guó),下面是組委會(huì)在選拔賽時(shí)隨機(jī)抽取的100名選手的成績(jī),按成績(jī)分組,得到的頻率分布表如下所示.
題號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 0.100 | ||
第2組 | ① | ||
第3組 | 20 | ② | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
第6組 | 100 | 1.00 |
(1)請(qǐng)先求出頻率分布表中①、②位置的相應(yīng)數(shù)據(jù),再完成如下的頻率分布直方圖;
(2)組委會(huì)決定在5名(其中第3組2名,第4組2名,第5組1名)選手中隨機(jī)抽取2名選接受考官進(jìn)行面試,求第4組至少有1名選手被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).
(1)設(shè)直線l與曲線C交于M,N兩點(diǎn),求|MN|;
(2)若點(diǎn)P(x,y)為曲線C上任意一點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)的圖象向左平移個(gè)單位,得到函數(shù)的圖象,則下列說(shuō)法正確的是
A. 的一個(gè)周期為 B.
C. 是圖象的一條對(duì)稱軸 D. 是偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】祖暅?zhǔn)俏覈?guó)古代的偉大科學(xué)家,他在5世紀(jì)末提出祖暅:“冪勢(shì)即同,則積不容異”,意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任意一個(gè)平面所截,若截面面積都相等,則這兩個(gè)幾何體的體積相等. 祖暅原理常用來(lái)由已知幾何體的體積推導(dǎo)未知幾何體的體積,例如由圓錐和圓柱的的體積推導(dǎo)半球體的體積,其示意圖如圖所示,其中圖(1)是一個(gè)半徑為R的半球體,圖(2)是從圓柱中挖去一個(gè)圓錐所得到的幾何體. (圓柱和圓錐的底面半徑和高均為R)
利用類似的方法,可以計(jì)算拋物體的體積:在x-O-y坐標(biāo)系中,設(shè)拋物線C的方程為y=1-x2 (-1x1),將曲線C圍繞y軸旋轉(zhuǎn),得到的旋轉(zhuǎn)體稱為拋物體. 利用祖暅原理可計(jì)算得該拋物體的體積為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力,組織了一場(chǎng)類似《最強(qiáng)大腦》的PK賽,兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽A隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(R).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.
(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);
(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?
附:相關(guān)系數(shù)公式,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com