在平面直角坐標(biāo)系中,已知焦距為4的橢圓數(shù)學(xué)公式的左、右頂點(diǎn)分別為A、B,橢圓C的右焦點(diǎn)為F,過(guò)F作一條垂直于x軸的直線(xiàn)與橢圓相交于R、S,若線(xiàn)段RS的長(zhǎng)為數(shù)學(xué)公式
(1)求橢圓C的方程;
(2)設(shè)Q(t,m)是直線(xiàn)x=9上的點(diǎn),直線(xiàn)QA、QB與橢圓C分別交于點(diǎn)M、N,求證:直線(xiàn)MN
必過(guò)x軸上的一定點(diǎn),并求出此定點(diǎn)的坐標(biāo);
(3)實(shí)際上,第(2)小題的結(jié)論可以推廣到任意的橢圓、雙曲線(xiàn)以及拋物線(xiàn),請(qǐng)你對(duì)拋物線(xiàn)y2=2px(p>0)寫(xiě)出一個(gè)更一般的結(jié)論,并加以證明.

解:(1)依題意,橢圓過(guò)點(diǎn)(2,),故,a2-b2=4,解得a2=9,b2=5,故橢圓C的方程為
(2)設(shè)Q(9,m),直線(xiàn)QA的方程為y=(x+3),代入橢圓方程,整理得(80+m2)x2+6x+9m2-720=0,
設(shè)M(x1,y1),則-3x1=,解得x1=,y1=(x1+3)=,故點(diǎn)M的坐標(biāo)為().
同理,直線(xiàn)QB的方程為y=(x-3),代入橢圓方程,整理得(20+m2)x2-6x+9m2-180=0,
設(shè)N(x2,y2),則3x2=,解得x2=,y2=(x1-3)=-,故點(diǎn)M的坐標(biāo)為(,-).
①若,解得m2=40,直線(xiàn)MN的方程為x=1,與x軸交與(1,0)點(diǎn);
②若m2≠40,直線(xiàn)MN的方程為y+=(x-),令y=0,解得x=1,.
綜上所述,直線(xiàn)MN必過(guò)x軸上的定點(diǎn)(1,0).
(3)結(jié)論:已知拋物線(xiàn)y2=2px(p>0)的頂點(diǎn)為O,P為直線(xiàn)x=-q(q≠0)上一動(dòng)點(diǎn),過(guò)點(diǎn)P作X軸的平行線(xiàn)與拋物線(xiàn)交于點(diǎn)M,直線(xiàn)OP與拋物線(xiàn)交于點(diǎn)N,則直線(xiàn)MN必過(guò)定點(diǎn)(q,0).
證明:設(shè)P(-q,m),則M(,m),直線(xiàn)OP的方程為y=-x,代入y2=2px,得y2+y=0,可求得N(,-),
直線(xiàn)MN的方程為y-m=(x-),令y=0,解得x=q,即直線(xiàn)MN必過(guò)定點(diǎn)(q,0).
分析:(1)由題意得,c=2,故a2-b2=4,又橢圓過(guò)點(diǎn)(2,),代入橢圓方程,列方程求解即可.
(2)設(shè)出直線(xiàn)QA的方程,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系,表示出點(diǎn)M的坐標(biāo),同理,表示出點(diǎn)N的坐標(biāo),然后討論直線(xiàn)MN與x軸的交點(diǎn)是否為定點(diǎn).
(3)類(lèi)比(2)中的結(jié)論,將橢圓改成拋物線(xiàn),證明與(2)類(lèi)似:設(shè)出P、M的坐標(biāo),利用直線(xiàn)OP的方程與拋物線(xiàn)方程聯(lián)立,求出點(diǎn)N的坐標(biāo),進(jìn)而求出MN的方程,從而MN與x軸的交點(diǎn)可求.
點(diǎn)評(píng):本題綜合考查橢圓的性質(zhì)及其應(yīng)用、直線(xiàn)與橢圓的位置關(guān)系及直線(xiàn)與拋物線(xiàn)的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意運(yùn)用方程思想、分類(lèi)討論、類(lèi)比等數(shù)學(xué)思想,同時(shí)考查了學(xué)生的基本運(yùn)算能力、運(yùn)算技巧、邏輯推理能力,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線(xiàn)C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱(chēng)點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫(xiě)出所有正確命題的編號(hào)).
①存在這樣的直線(xiàn),既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)
②如果k與b都是無(wú)理數(shù),則直線(xiàn)y=kx+b不經(jīng)過(guò)任何整點(diǎn)
③直線(xiàn)l經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過(guò)兩個(gè)不同的整點(diǎn)
④直線(xiàn)y=kx+b經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng)的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線(xiàn)y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線(xiàn)的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案