如圖,橢圓=1(a>b>0)的上,下兩個頂點(diǎn)為A,B,直線l:y=-2,點(diǎn)P是橢圓上異于點(diǎn)A,B的任意一點(diǎn),連接AP并延長交直線l于點(diǎn)N,連接PB并延長交直線l于點(diǎn)M,設(shè)AP所在的直線的斜率為k1,BP所在的直線的斜率為k2.若橢圓的離心率為,且過點(diǎn)A(0,1).
(1)求k1·k2的值;
(2)求MN的最小值;
(3)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn);如不過定點(diǎn),請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,拋物線C與直線l1:y=-x的一個交點(diǎn)的橫坐標(biāo)為8.
(1)求拋物線C的方程;
(2)不過原點(diǎn)的直線l2與l1垂直,且與拋物線交于不同的兩點(diǎn)A、B,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓M:=1(a>)的右焦點(diǎn)為F1,直線l:x=與x軸交于點(diǎn)A,若=2 (其中O為坐標(biāo)原點(diǎn)).
(1)求橢圓M的方程;
(2)設(shè)P是橢圓M上的任意一點(diǎn),EF為圓N:x2+(y-2)2=1的任意一條直徑(E,F為直徑的兩個端點(diǎn)),求·的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)P(0,-1)是橢圓C1:=1(a>b>0)的一個頂點(diǎn),C1的長軸是圓C2:x2+y2=4的直徑.l1,l2是過點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn)O,左頂點(diǎn),離心率,為右焦點(diǎn),過焦點(diǎn)的直線交橢圓于、兩點(diǎn)(不同于點(diǎn)).
(1)求橢圓的方程;
(2)當(dāng)的面積時,求直線PQ的方程;
(3)求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:y=x+,圓O:x2+y2=5,橢圓E:=1(a>b>0)的離心率e=,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點(diǎn)P作橢圓E的兩條切線,若切線都存在斜率,求證:兩條切線的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知離心率為的橢圓()過點(diǎn)
(1)求橢圓的方程;
(2)過點(diǎn)作斜率為直線與橢圓相交于兩點(diǎn),求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點(diǎn)為雙曲線的一個焦點(diǎn),且兩條曲線都經(jīng)過點(diǎn).
(1)求這兩條曲線的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)在拋物線上,且它與雙曲線的左,右焦點(diǎn)構(gòu)成的三角形的面積為4,求點(diǎn) 的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓過點(diǎn),離心率為.
(1)求橢圓的方程;
(2)求過點(diǎn)且斜率為的直線被橢圓所截得線段的中點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com