【題目】如圖,直棱柱ABC﹣A1B1C1中,D,E分別是AB,BB1的中點,AA1=AC=CB= AB.

(1)證明:BC1∥平面A1CD
(2)求二面角D﹣A1C﹣E的正弦值.

【答案】
(1)解:證明:連結(jié)AC1交A1C于點F,則F為AC1的中點,

又D是AB中點,連結(jié)DF,則BC1∥DF,

因為DF平面A1CD,BC1平面A1CD,

所以BC1∥平面A1CD.


(2)解:因為直棱柱ABC﹣A1B1C1,所以AA1⊥CD,

由已知AC=CB,D為AB的中點,所以CD⊥AB,

又AA1∩AB=A,于是,CD⊥平面ABB1A1,

設(shè)AB=2 ,則AA1=AC=CB=2,得∠ACB=90°,

CD= ,A1D= ,DE= ,A1E=3

故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,

又A1C=2 ,過D作DF⊥A1C于F,∠DFE為二面角D﹣A1C﹣E的平面角,

在△A1DC中,DF= = ,EF= = ,

所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=


【解析】(1)通過證明BC1平行平面A1CD內(nèi)的直線DF,利用直線與平面平行的判定定理證明BC1∥平面A1CD(2)證明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可.
【考點精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(1+x)e2x , g(x)=ax+ +1+2xcosx,當x∈[0,1]時,
(1)求證: ;
(2)若f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,是棱的中點.

(1)證明:平面;

(2)若是棱的中點,求三棱錐的體積與三棱柱的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是( )
A.(0,1)
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.

(1)求{an}的通項公式;

(2) 是{an}的前n項和,求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論

(1)某學(xué)校從編號依次為001,002,…,900的900個學(xué)生中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本中有兩個相鄰的編號分別為053,098,則樣本中最大的編號為862.

(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.

(3)若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1.

(4)對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.

則正確的個數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于函數(shù)的判斷正確的是(  )

的解集是;

極小值,是極大值;

沒有最小值,也沒有最大值.

A. ①③ B. ①②③ C. D. ①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗.假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為 ,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立.
(1)求這批產(chǎn)品通過檢驗的概率;
(2)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)要完成下列3項抽樣調(diào)查:

①從15種疫苗中抽取5種檢測是否合格.

②渦陽縣某中學(xué)共有480名教職工,其中一線教師360名,行政人員48名,后勤人員72名.為了解教職工對學(xué)校校務(wù)公開方面的意見,擬抽取一個容量為20的樣本.

③渦陽縣某中學(xué)報告廳有28排,每排有35個座位,一次報告會恰好坐滿了聽眾,報告會結(jié)束后,為了聽取意見,需要請28名聽眾進行座談.

較為合理的抽樣方法是( )

A. ①簡單隨機抽樣, ②系統(tǒng)抽樣, ③分層抽樣

B. ①簡單隨機抽樣, ②分層抽樣, ③系統(tǒng)抽樣

C. ①系統(tǒng)抽樣, ②簡單隨機抽樣, ③分層抽樣

D. ①分層抽樣, ②系統(tǒng)抽樣, ③簡單隨機抽樣

查看答案和解析>>

同步練習(xí)冊答案