【題目】若無(wú)窮數(shù)列滿(mǎn)足:,當(dāng)'時(shí), (其中表示,…,中的最大項(xiàng)),有以下結(jié)論:

若數(shù)列是常數(shù)列,則;

若數(shù)列是公差的等差數(shù)列,則;

若數(shù)列是公比為的等比數(shù)列,則

若存在正整數(shù),對(duì)任意,都有,則,是數(shù)列的最大項(xiàng).

其中正確結(jié)論的序號(hào)是____(寫(xiě)出所有正確結(jié)論的序號(hào)).

【答案】①②③④

【解析】

①令n=2,,若數(shù)列是常數(shù)列,則,所以,即得;②若數(shù)列是等差數(shù)列,則max{,}=|d|,有最大值,只能遞減;③若數(shù)列是等比數(shù)列,令n=2,,所以(舍);④,為周期數(shù)列,可先假設(shè)最大,由易證得,所以最大.

解:①若數(shù)列是常數(shù)列,則max{,,}=0,所以),①正確;

②若數(shù)列是公差d≠0的等差數(shù)列,則max{,,,}=|d|,所以有最大值,因此不可能遞增且d≠0,所以d0,②正確;

③若數(shù)列是公比為q的等比數(shù)列,則,且,所以,所以,又因?yàn)?/span>,所以,所以q1,③正確;

④若存在正整數(shù)T,對(duì)任意,都有,假設(shè)在最大,則中都是最大,則,且,即,所以,所以是數(shù)列的最大項(xiàng),④正確.

故答案為:①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為

(1)求直線(xiàn)的直角坐標(biāo)方程與曲線(xiàn)的普通方程;

(2)若是曲線(xiàn)上的動(dòng)點(diǎn),為線(xiàn)段的中點(diǎn),求點(diǎn)到直線(xiàn)的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)為,若過(guò)點(diǎn)且斜率為1的直線(xiàn)與拋物線(xiàn)交于 兩點(diǎn),且.

(1)求拋物線(xiàn)的方程;

(2)若平行于的直線(xiàn)與拋物線(xiàn)相切于點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,底面為矩形, .側(cè)面底面.

(1)證明: ;

(2)設(shè)與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的方程為,過(guò)點(diǎn)且斜率為的直線(xiàn)與曲線(xiàn)相切于點(diǎn)

(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求曲線(xiàn)的極坐標(biāo)方程和點(diǎn)的極坐標(biāo);

(2)若點(diǎn)在曲線(xiàn)上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某連鎖分店銷(xiāo)售某種商品,每件商品的成本為4元,并且每件商品需向總店交元的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為元時(shí),一年的銷(xiāo)售量為萬(wàn)件.

1)求該連鎖分店一年的利潤(rùn)(萬(wàn)元)與每件商品的售價(jià)的函數(shù)關(guān)系式

2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤(rùn)最大,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)集合,,對(duì)于任意,定義,對(duì)任意,定義,記為集合的元素個(gè)數(shù),求的值;

2)在等差數(shù)列和等比數(shù)列中,,,是否存在正整數(shù),使得數(shù)列的所有項(xiàng)都在數(shù)列中,若存在,求出所有的,若不存在,說(shuō)明理由;

3)已知當(dāng)時(shí),有,根據(jù)此信息,若對(duì)任意,都有,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),直線(xiàn)經(jīng)過(guò)點(diǎn),且傾斜角為

(1)寫(xiě)出直線(xiàn)的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線(xiàn)與圓相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,直線(xiàn)是拋物線(xiàn))和圓C的公切線(xiàn),切點(diǎn)(在第一象限)分別為P、Q.F為拋物線(xiàn)的焦點(diǎn),切線(xiàn)交拋物線(xiàn)的準(zhǔn)線(xiàn)于A,且.

1)求切線(xiàn)的方程;

2)求拋物線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案