精英家教網 > 高中數學 > 題目詳情

已知三個向量a、b、c兩兩所夾的角都為120°,|a|=1,|b|=2,|c|=3,則向量a+b+c與向量a的夾角為(  )

(A)30°  (B)60°  (C)120°  (D)150°

D.由已知得(a+b+c)·a

=a2+a·b+a·c=1+2cos120°+3cos120°=-,

|a+b+c|=

.

設向量a+b+c與向量a的夾角為θ,

則cosθ==-,即θ=150°,故向量a+b+c與向量a的夾角為150°.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知三個向量
a
=(cosθ1,sinθ1),
b
=(cosθ2,sinθ2),
c
=(cosθ3,sinθ3),滿足
a
+
b
+
c
=0
,則
a
b
的夾角為
2
3
π
2
3
π

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,已知三個內角A、B、C的對邊分別是a、b、c,向量
m
=(a,b),
n
=(cos(2π-B),sin(
π
2
+A)),若a≠b且
m
n

(Ⅰ)試求內角C的大;
(Ⅱ)若a=6,b=8,△ABC的外接圓圓心為O,點P位于劣弧
AC
上,∠PAB=60°,求四邊形ABCP的面積.

查看答案和解析>>

科目:高中數學 來源:設計選修數學2-1蘇教版 蘇教版 題型:044

已知三個向量ab,c不共面,并且pabc,q=2a-3b-5c,r=-7a+18b+22c,試問向量p、q、r是否共面?

查看答案和解析>>

科目:高中數學 來源:同步題 題型:解答題

已知三個向量a ,b ,c 不共面,并且p=a+b-c ,q=2a-3b-5c ,r=-7a+18b+22c ,向量p ,q ,r 是否共面?

查看答案和解析>>

同步練習冊答案