在直角坐標系x0y中,角α的頂點為坐標原點,始邊在x軸的正半軸上,當角α的終邊為射線l:y=3x(x≥0)時,求
(1)
sinα+cosα
sinα-cosα
的值;
(2)
sin(2π-α)cos(π+α)cos(
π
2
-α)
cos(π-α)sin(3π-α)sin(
π
2
+α)
的值.
分析:(1)由題意可得 tanα=3,代入
sinα+cosα
sinα-cosα
=
tanα+1
tanα-1
,運算求得結(jié)果.
(2)利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系,把要求的式子化為-
sinα•cosα•sinα
cosα•sinα•cosα
=-tanα,從而得到結(jié)果.
解答:解:(1)由題意可得 tanα=3,∴
sinα+cosα
sinα-cosα
=
tanα+1
tanα-1
=
3+1
3-1
=2.
(2)
sin(2π-α)cos(π+α)cos(
π
2
-α)
cos(π-α)sin(3π-α)sin(
π
2
+α)
=
(-sinα)•(-cosα)•sinα
(-cosα)•sin(π-α)•cosα
=-
sinα•cosα•sinα
cosα•sinα•cosα
=-tanα=-3.
點評:本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標系x0y中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F(xiàn)2,F(xiàn)2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
5
3

(Ⅰ)求M點的坐標及橢圓C1的方程;
(Ⅱ)已知直線l∥OM,且與橢圓C1交于A,B兩點,提出一個與△OAB面積相關(guān)的問題,并作出正確解答.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題包括高考A,B,C,D四個選題中的B,C兩個小題,每小題10分,共20分.把答案寫在答題卡相應(yīng)的位置上.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量
β
=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:極坐標與參數(shù)方程
在直角坐標系x0y中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標系xOy的O點為極點,Ox為極軸,且長度單位相同,建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-
π
4
)

(1)求直線l的傾斜角;
(2)若直線l與曲線l交于A、B兩點,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•合肥二模)在直角坐標系x0y中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標系x0y的O點為極點,0x為極軸,且長度單位相同,建立極坐標系,得曲線C的極坐標方程為ρ=2cos(θ-
π
4
)
.若直線l與曲線C交于A,B兩點,則AB=
10
2
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍山縣模擬)在直角坐標系x0y中,曲線C1的參數(shù)方程為
x=-2t+1
y=t
(t為參數(shù)),在極坐標系(與直角坐標系x0y取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中曲線C2的方程為ρ=4sinθ,則曲線C1、C2的公共點的個數(shù)為
2
2

查看答案和解析>>

同步練習(xí)冊答案