【題目】已知橢圓E的長軸長與焦距比為2:1,左焦點F(﹣2,0),一定點為P(﹣8,0).
(1)求橢圓E的標準方程;
(2)過P的直線與橢圓交于P1、P2兩點,設(shè)直線P1F、P2F的斜率分別為k1、k2,求證:k1+k2=0.
(3)求△P1P2F面積的最大值.
【答案】(1)+=1;(2)見解析;(3)3.
【解析】
(1)設(shè)橢圓方程為+=1(a>b>0),
由題意可得c=2,e==,又c2=a2﹣b2,
解得c=2,a=4,b=2,
即橢圓方程為+=1;
(2)證明:設(shè)直線P1P2:y=k(x+8),
代入橢圓方程可得(3+4k2)x2+64k2x+256k2﹣48=0,
由△=642k4﹣4(3+4k2)(256k2﹣48)>0,即有
設(shè)P1(x1,y1),P2(x2,y2),
x1+x2=﹣,x1x2=,
即有k1+k2=+=+=k,
將韋達定理代入上式,可得
2x1x2+10(x1+x2)+32=﹣+32=0,
則k1+k2=0;
(2)△P1P2F面積S=|PF||y1﹣y2|
=3|k||x1﹣x2|=3|k|=3|k|
=72,
設(shè)t=3+4k2(3<t<4),
則S=72=36=36,
當=即t=即k=±時,取得最大值,且為3.
則△P1P2F面積的最大值為3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于,兩點,且的周長為12.
(Ⅰ)求橢圓的方程
(Ⅱ)過點作斜率為的直線與橢圓交于兩點,,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知頂點為原點的拋物線C的焦點與橢圓的上焦點重合,且過點.
(1)求橢圓的標準方程;
(2)若拋物線上不同兩點A,B作拋物線的切線,兩切線的斜率,若記AB的中點的橫坐標為m,AB的弦長,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果實系數(shù)、、和、、都是非零常數(shù).
(1)設(shè)不等式和的解集分別是、,試問是的什么條件?并說明理由.
(2)在實數(shù)集中,方程和的解集分別為和,試問是的什么條件?并說明理由.
(3)在復(fù)數(shù)集中,方程和的解集分別為和,證明:是的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4正方體中,為的中點,,點在正方體表面上移動,且滿足,則點和滿足條件的所有點構(gòu)成的圖形的面積是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)和.
(1)為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個不相等的實根,當時判斷在上的單調(diào)性;
(3)當時,問是否存在x的值,使?jié)M足且的任意實數(shù)a,不等式恒成立?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象的頂點坐標為,且過坐標原點O,數(shù)列的前n項和為,點()在二次函數(shù)的圖象上.
(1)求數(shù)列的表達式;
(2)設(shè)(),數(shù)列的前n項和為,若對恒成立,求實數(shù)m的取值范圍;
(3)在數(shù)列中是否存在這樣的一些項,,,,…,…(),這些項能夠依次構(gòu)成以為首項,q(,)為公比的等比數(shù)列?若存在,寫出關(guān)于k的表達式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若曲線y=f(x)與直線y=b(b∈R)有3個交點,求實數(shù)b的取值范圍;
(3)過點P(﹣1,0)可作幾條直線與曲線y=f(x)相切?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com