如圖所示,已知直線l的解析式是yx-4,并且與x軸、y軸分別交于AB兩點.一個半徑為1.5的圓C,圓心C從點(0,1.5)開始以每秒0.5個單位的速度沿著y軸向下運動,當(dāng)圓C與直線l相切時,求該圓運動的時間.

解析] 設(shè)運動的時間為tt,則tt后圓心的坐標(biāo)為(0,1.5-0.5t).

∵圓C與直線lyx-4,即4x-3y-12=0相切,

.

解得t=6或16.

即該圓運動的時間為6t或16t.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知直線l:3x+4y-12=0與x,y軸的正半軸分別交于A,B兩點,直線l1和AB,OA分別交于C,D,且平分△AOB的面積,求CD的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知直線l的斜率為k且過點Q(-3,0),拋物線C:y2=16x,直線與拋物線l有兩個不同的交點,F(xiàn)是拋物線的焦點,點A(4,2)為拋物線內(nèi)一定點,點P為拋物線上一動點.
(1)求|PA|+|PF|的最小值;
(2)求k的取值范圍;
(3)若O為坐標(biāo)原點,問是否存在點M,使過點M的動直線與拋物線交于B,C兩點,且以BC為直徑的圓恰過坐標(biāo)原點,若存在,求出動點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知直線l:3x+4y-12=0與x,y軸的正半軸分別交于A,B兩點,直線l1和線段AB,OA分別交于C,D且平分△AOB的面積.
(1)求△AOB的面積;
(2)求CD的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市小海中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,已知直線l:3x+4y-12=0與x,y軸的正半軸分別交于A,B兩點,直線l1和線段AB,OA分別交于C,D且平分△AOB的面積.
(1)求△AOB的面積;
(2)求CD的最小值.

查看答案和解析>>

同步練習(xí)冊答案