若關(guān)于x的方程9x+(a+4)•3x+4=0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(  )
分析:利用換元法將方程轉(zhuǎn)為為一元二次方程去求解.
解答:解:由9x+(a+4)•3x+4=0,得(3x2+(a+4)•3x+4=0.
設(shè)t=3x,則t>0.
則原方程等價(jià)為t2+(a+4)t+4=0,有大于0的解.
設(shè)f(t)=t2+(a+4)t+4,因?yàn)閒(0)=4>0,
所以要使f(t)有大于0的解,
則若對(duì)稱(chēng)軸-
a+4
2
≥0

此時(shí)△≥0,即(a+4)2-4×4≥0,此時(shí)解得a≤-8.
若對(duì)稱(chēng)軸-
a+4
2
<0
,此時(shí)不成立.
綜上實(shí)數(shù)a的取值范圍是a≤-8.
故選D.
點(diǎn)評(píng):本題主要考查指數(shù)函數(shù)和二次函數(shù)的圖象和性質(zhì),利用換元法是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程9x+a•3x+1=0有實(shí)數(shù)解.則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程9x+(4+a)•3x+4=0有解,則實(shí)數(shù)a的取值范圍是
{a|a≤-8}
{a|a≤-8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程9x-m3x+1=0在R上有解,則實(shí)數(shù)m取值范圍是
[2,+∞)
[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程9x+(4+a)•3x+4=0沒(méi)有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍為
(-8,+∞)
(-8,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案