【題目】已知坐標平面上點與兩個定點, 的距離之比等于.

(1)求點的軌跡方程,并說明軌跡是什么圖形;

(2)記(1)中的軌跡為,過點的直線所截得的線段的長為,求直線的方程

【答案】 (1) 的軌跡方程是,軌跡是以為圓心,以為半徑的圓;

(2) ,或.

【解析】 試題分析】(1)運用兩點間距離公式建立方程進行化簡;(2)借助直線與圓的位置關系,運用圓心距、半徑、弦長之間的關系建立方程待定直線的斜率,再用直線的點斜式方程分析求解:

(1)由題意,得

化簡,得

的軌跡方程是

軌跡是以為圓心,以為半徑的圓

(2)當直線的斜率不存在時, ,

此時所截得的線段的長為

符合題意.

當直線的斜率存在時,設的方程為

,即

圓心到的距離,

由題意,得,

解得

∴直線的方程為

.

綜上,直線的方程為

,或.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且離心率為

1求橢圓的標準方程;

2若點與點均在橢圓上,且關于原點對稱,問:橢圓上是否存在點在一象限,使得為等邊三角形?若存在,求出點的坐標;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個人連續(xù)射擊三次,事件至少有一次擊中目標的對立事件是(

A.至多有一次擊中目標B.三次都擊不中目標

C.三次都擊中目標D.只有一次擊中目標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線處的切線方程;

(2)當時,討論函數(shù)的單調(diào)性;

(3)當時,記函數(shù)的導函數(shù)的兩個零點是),求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著節(jié)假日外出旅游人數(shù)增多,倡導文明旅游的同時,生活垃圾處理也面臨新的挑戰(zhàn),某海濱城市沿海有三個旅游景點,在岸邊兩地的中點處設有一個垃圾回收站點(如圖),兩地相距10,從回收站觀望地和地所成的視角為,且,設;

(1)用分別表示,并求出的取值范圍;

(2)某一時刻太陽與三點在同一直線,此時地到直線的距離為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的左、右焦點分別為,為橢圓上一點(在軸上方),連結(jié)并延長交橢圓于另一點,設.

(1)若點的坐標為,且的周長為8,求橢圓的方程;

(2)若垂直于軸,且橢圓的離心率,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修41:幾何證明選講

如圖,已知AP是O的切線,P為切點,AC是O的割線,與O交于B、C兩點,圓心O在PAC的內(nèi)部,點M是BC的中點.

1證明:A、P、O、M四點共圓;

2OAM+APM的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,焦點在軸上,短軸長為2,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點.過右焦點軸不垂直的直線交橢圓于兩點.

(1)求橢圓的方程;

(2)當直線的斜率為1時,求的面積;

(3)在線段上是否存在點,使得以為鄰邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, ,側(cè)面為等邊三角形, , .

(Ⅰ)證明: 平面

(Ⅱ)求與平面所成的角的大小.

查看答案和解析>>

同步練習冊答案