【題目】設(shè)函數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)若,討論時的零點的個數(shù).

【答案】(1)見解析(2)見解析

【解析】試題分析:(1)由解析式求出定義域和,化簡后對進行分類討論,根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,分別求出函數(shù)的增區(qū)間、減區(qū)間;(2)由(1)求函數(shù)的最小值,由條件列出不等式求出的范圍,對進行分類討論,并分別判斷在區(qū)間上的單調(diào)性,求出判斷出符號,即可得結(jié)論.

試題解析:(1),

, 增.

, ,有的增區(qū)間.

,有的減區(qū)間為.

(2)①時,有,在單調(diào)遞減,

, ,在上有一個零點.

時,有,在單調(diào)遞減,

,在上沒有零點.

時,有,在單調(diào)遞減,在單調(diào)遞增,

,在上沒有零點.

時, ,在上單調(diào)遞增,

上沒有零點.

綜上所述①上有一個零點,

,在上沒有零點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線方程為,拋物線到直線距離最小點,點拋物線上異于點點,直線直線于點,過點平行的直線與拋物線于點.

坐標;

)證明直線定點,并求這個定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;

(2)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體中,分別為的中點.

(1)求證:平面⊥平面

(2)當點上運動時,是否都有平面,證明你的結(jié)論;

(3)若的中點,求所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)恒成立,求實數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求的最小正周期和最大值;

(2)討論的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生身高情況,某校以的比例對全校1000名學生按性別進行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計算所抽取的男生人數(shù),并估計男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)記的極小值為,求的最大值;

)若對任意實數(shù)恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在坐標原點,焦點在軸上的橢圓,離心率為且過點,過定點的動直線與該橢圓相交于兩點.

(1)若線段中點的橫坐標是,求直線的方程;

(2)在軸上是否存在點,使為常數(shù)?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案