下圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3.

(1)設(shè)點(diǎn)OAB的中點(diǎn),證明OC∥平面A1B1C1;

(2)求AB與平面AA1C1C所成的角的大小;

(3)求此幾何體的體積.

解法一:(1)證明:作ODAA1A1B1D,連結(jié)C1D.

ODBB1CC1.

因?yàn)?I >O是AB的中點(diǎn),

所以OD=(AA1+BB1)=3=CC1.

ODC1C是平行四邊形,因此有OCC1D,

C1D平面C1B1A1OC平面C1B1A1,則OC∥面A1B1C1.

(2)解:如圖,過B作截面BA2C2∥面A1B1C1,分別交AA1、CC1于A2、C2,

BHA2C2H.

因?yàn)槠矫?I >A2BC2⊥平面AA1C1C,則BH⊥面AA1C1C.

連結(jié)AH,則∠BAH就是AB與面AA1C1C所成的角.

因?yàn)?I >BH=,AB=,

所以sinBAH=,

AB與面AA1C1C所成的角為∠BAH=arcsin.

(3)解:因?yàn)?I >BH=,

所以VBAA2C2C=SAA2C2C·BH=·(1+2)··=,

VA1B1C1—A2BC2=SA1B1C1·BB1=·2=1.

所求幾何體的體積為V=VBAA2C2C+VA1B1C1—A2BC2=.

解法二:

(1)證明:如圖,以B1為原點(diǎn)建立空間直角坐標(biāo)系,

A(0,1,4),B(0,0,2),C(1,0,3),因?yàn)?I >O是AB的中點(diǎn),

所以O(0,,3),=(1,-,0).

易知n=(0,0,1)是平面A1B1C1的一個法向量.

因?yàn)?SUB>·n=0,OC平面A1B1C1,

所以OC∥平面A1B1C1.

(2)解:設(shè)AB與面AA1C1C所成的角為θ,

求得=(0,0,4),=(1,-1,0).

設(shè)m=(x,y,z)是平面AA1C1C的一個法向量,則

x=y=1,得m=(1,1,0).

又因?yàn)?SUB>=(0,-1,-2),

所以cos〈m,〉=

則si=.

所以AB與面AA1C1C所成的角為arcsin.

(3)同解法一.綠色通道:

本題主要考查直線與平面平行的判定及直線與平面所成角及幾何體體積的求法,解法一為傳統(tǒng)解法,解法二為向量解法.兩種方法各有千秋,充分體現(xiàn)了思維的靈活性.

在解決此類問題時,要注意計算方法的靈活性,特別是向量解法,應(yīng)注意各點(diǎn)的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(07年江西卷文)(12分)

下圖是一個直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,,,

(1)設(shè)點(diǎn)的中點(diǎn),證明:平面;

(2)求與平面所成的角的大小;

(3)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省高考真題 題型:解答題

下圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC。已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,
(1)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1;
(2)求二面角B-AC-A1的大。
(3)求此幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省高考真題 題型:解答題

下圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC。已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,CC1=3,
(1)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1;
(2)求AB與平面AA1C1C所成的角的大小;
(3)求此幾何體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20. 下圖是一個直三棱柱(以A1B1C1為底面)被一平面所截得到的幾何體,截面為ABC.已知A1B1=B1C1=1,∠AlBlC1=90°,AAl=4,BBl=2,CCl=3.

   (1)設(shè)點(diǎn)O是AB的中點(diǎn),證明:OC∥平面A1B1C1;

   (2)求AB與平面AA1C1C所成的角的大;

   (3)求此幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案