【題目】如圖,邊長為5的正方形與矩形所在平面互相垂直,分別為的中點,.
(1)求證:平面;
(2)求證:平面;
(3)在線段上是否存在一點,使得?若存在,求出的長;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若x=2是函數(shù)f(x)的極值點,求在(1,h(1))處的切線方程;
(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)設(shè),將函數(shù)表示為關(guān)于的函數(shù),求的解析式;
(2)對任意,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1,O是底面ABCD對角線的交點.
求證:(I) C1O∥面AB1D1;
(II)面A1C⊥面AB1D1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某店銷售進價為2元/件的產(chǎn)品,假設(shè)該店產(chǎn)品每日的銷售量(單位:千件)與銷售價格(單位:元/件)滿足的關(guān)系式,其中.
(1)若產(chǎn)品銷售價格為4元/件,求該店每日銷售產(chǎn)品所獲得的利潤;
(2)試確定產(chǎn)品銷售價格的值,使該店每日銷售產(chǎn)品所獲得的利潤最大.(保留1位小數(shù)點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中錯誤的是( )
A.在三角形中,已知兩邊及其一邊的對角,不能用余弦定理求解三角形
B.余弦定理揭示了任意三角形邊角之間的關(guān)系,因此它適用于任何三角形
C.利用余弦定理,可以解決已知三角形三邊求角的問題
D.在三角形中,勾股定理是余弦定理的特例
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地政府為科技興市,欲將如圖所示的一塊不規(guī)則的非農(nóng)業(yè)用地規(guī)劃建成一個矩形的高科技工業(yè)園區(qū).已知,,,曲線是以點為頂點的且開口向上的拋物線的一段,如果要使矩形的相鄰兩邊分別落在,上,且一個頂點落在曲線段上,問矩形的兩邊長分別為多少時使矩形工業(yè)園區(qū)的用地面積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)有以下四個命題:
①底面是平行四邊形的四棱柱是平行六面體;
②底面是矩形的平行六面體是長方體;
③直四棱柱是直平行六面體;
④棱臺的相對側(cè)棱延長后必交于一點.
其中正確命題的序號是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com