【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n
(1)設(shè)bn= .證明:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

【答案】
(1)解:由an+1=2an+2n.兩邊同除以2n

,即bn+1﹣bn=1

∴{bn}以1為首項(xiàng),1為公差的等差數(shù)列


(2)解:由(1)得

∴an=n2n1

Sn=20+2×21+3×22+…+n2n1

2Sn=21+2×22+…+(n﹣1)2n1+n2n

∴﹣Sn=20+21+22+…+2n1﹣n2n

=

∴Sn=(n﹣1)2n+1


【解析】(1)由an+1=2an+2n構(gòu)造可得 即數(shù)列{bn}為等差數(shù)列(2)由(1)可求 =n,從而可得an=n2n1 利用錯(cuò)位相減求數(shù)列{an}的和
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差關(guān)系的確定的相關(guān)知識(shí),掌握如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),即=d ,(n≥2,n∈N)那么這個(gè)數(shù)列就叫做等差數(shù)列,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)小明訂了一份報(bào)紙,送報(bào)人可能在早上6:30—7:30之間把報(bào)紙送到,小明離家的時(shí)間在早上7:00—8:00之間,則他在離開家之前能拿到報(bào)紙的概率( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點(diǎn)A(﹣1,2)為圓心的圓與直線m:x+2y+7=0相切,過點(diǎn)B(﹣2,0)的動(dòng)直線l與圓A相交于M、N兩點(diǎn)
(1)求圓A的方程.
(2)當(dāng)|MN|=2 時(shí),求直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱臺(tái)中, 分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點(diǎn),

(Ⅰ)是否存在實(shí)數(shù)使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由;

(Ⅱ)在 (Ⅰ)的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是正項(xiàng)數(shù)列的前項(xiàng)和,且.

(Ⅰ)求數(shù)列通項(xiàng)公式;

(Ⅱ)是否存在等比數(shù)列,使對(duì)一切正整數(shù)都成立?并證明你的結(jié)論.

(Ⅲ)設(shè)),且數(shù)列的前項(xiàng)和為,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個(gè)說法:
①若函數(shù)f(x)=asinx+cosx(x∈R)的圖象關(guān)于直線x= 對(duì)稱,則a= ;
②已知向量 =(1,2), =(﹣2,m),若 的夾角為鈍角,則m<1;
③當(dāng) <α< 時(shí),函數(shù)f(x)=sinx﹣logax有三個(gè)零點(diǎn);
④函數(shù)f(x)=xsinx在[﹣ ,0]上單調(diào)遞減,在[0, ]上單調(diào)遞增.
其中正確的是(填上所有正確說法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x2+(a2﹣1)x+a﹣2=0的兩根滿足(x1﹣1)(x2﹣1)<0,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一枚質(zhì)地均勻的骰子先后拋擲兩次,若第一次朝上一面的點(diǎn)數(shù)為a,第二次朝上一面的點(diǎn)數(shù)為b,則函數(shù)y=ax2﹣2bx+1在(﹣∞,2]上為減函數(shù)的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)為(0,1).當(dāng)m變化時(shí),解答下列問題:

(1)能否出現(xiàn)ACBC的情況?說明理由;

(2)證明過A,B,C三點(diǎn)的圓在y軸上截得的弦長為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案