已知命題p:“|x-1|≤1”,命題q:“x∉Z”,如果“p且q”與“非p”同時為假命題,則滿足條件的x為( 。
分析:根據(jù)題意,非p為假命題,則p為真命題,又由p且q為假命題,則q為假命題,綜合可得|x-1|≤1且x∈Z,解可得答案.
解答:解:根據(jù)題意,非p為假命題,則p為真命題,
又由p且q為假命題,則q為假命題,即有x∈Z,
則有|x-1|≤1且x∈Z,
即0≤x≤2且x∈Z,
解可得x=0,1,2;
故選D.
點評:本題考查復合命題真假的判斷,關鍵在于判斷出p、q的真假.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題P:?x∈R,使x2-x+a=0;命題Q:函數(shù)y=
ax-1
ax2+ax+1
的定義域為R.
(1)若命題P為真,求實數(shù)a的取值范圍;
(2)若命題Q為真,求實數(shù)a的取值范圍;
(3)如果P∧Q為假,P∨Q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,2x2+2x+
1
2
<0
;命題q:?x∈R,sinx-cosx=
2
.則下列判斷正確的是( 。
A、p是真命題
B、q是假命題
C、¬P是假命題
D、¬q是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:x=2k+1(k∈Z),命題q:x=4k-1(k∈Z),則p是q的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是
?x?R,x2+2ax+a>0
?x?R,x2+2ax+a>0
;若命題p為假命題,則實數(shù)a的取值范圍是
(0,1)
(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:?x∈R,使2x2+(k-1)x+
1
2
<0;命題q:方程
x2
9-k
-
y2
k-1
=1
表示雙曲線.若p∧q為真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案