【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系
在平面直角坐標(biāo)系中,已知曲線: ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.已知直線 : .
(Ⅰ)試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;
(Ⅱ)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.
[選修 4-5]不等式選講
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C是橢圓C: (a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2,0),BC過橢圓的中心,且·=0,||=2||
(1)求橢圓C的方程;
(2)過點(diǎn)(0,t)的直線l(斜率存在)與橢圓C交于P,Q兩點(diǎn),設(shè)D為橢圓C與y軸負(fù)半軸的交點(diǎn),且||=||,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( )
A.“x<﹣1”是“x2﹣x﹣2>0”的必要不充分條件
B.“P且Q”為假,則P假且 Q假
C.命題“ax2﹣2ax+3>0恒成立”是真命題,則實(shí)數(shù)a的取值范圍是0≤a<3
D.命題“若x2﹣3x+2=0,則x=2”的否命題為“若x2﹣3x+2=0,則x≠2”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說法正確的是( )
A.f(x)的圖象關(guān)于直線x=﹣ 對稱
B.函數(shù)f(x)在[﹣ ,0]上單調(diào)遞增
C.f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對稱
D.將函數(shù)y=2sin(2x﹣ )的圖象向左平移 個單位得到f(x)的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線與直線相切,求實(shí)數(shù)的值;
(2)記,求在上的最大值;
(3)當(dāng)時,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積.
(1)求點(diǎn)的軌跡方程;
(2)在點(diǎn)的軌跡上有一點(diǎn)且點(diǎn)在軸的上方, ,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點(diǎn),其橫坐標(biāo)分別為, ,線段的中點(diǎn)的橫坐標(biāo)為,且, 恰為函數(shù)的零點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設(shè)函數(shù).若對于任意,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣ .
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com