【題目】函數(shù)f(x)=log0.5(5+4x﹣x2)的單調(diào)遞增區(qū)間是

【答案】[2,5)
【解析】解:令t=5+4x﹣x2 >0,求得﹣1<x<5,故函數(shù)的定義域為(﹣1,5),f(x)=log0.5t,
本題即求函數(shù)t在定義域內(nèi)的增區(qū)間.
利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的增區(qū)間為[2,5),
所以答案是:[2,5).
【考點精析】通過靈活運用復(fù)合函數(shù)單調(diào)性的判斷方法,掌握復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題“x∈R,2x>0”的否定是“”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) a∈R,若(1+i)(a﹣i)=﹣2i,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上三條直線x﹣2y+1=0,x﹣1=0,x+ky=0,如果這三條直線將平面劃分為六部分,則實數(shù)k的取值集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合S,T滿足≠ST,若S滿足下面的條件:(i)對于a,b∈S,都有a-b∈S且ab∈S;(ⅱ)對于r∈S,n∈T,都有nr∈S,則稱S是T的一個理想,記作ST.現(xiàn)給出下列集合對:①S={0},T=R;②S={偶數(shù)},T=Z;③S=R,T=C(C為復(fù)數(shù)集),其中滿足ST的集合對的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0<a<1,則a2、2a、log2a的大小關(guān)系是(
A.a2>2a>log2a
B.2a>a2>log2a
C.log2a>a2>2a
D.2a>log2a>a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知e是自然對數(shù)的底數(shù),實數(shù)a是常數(shù),函數(shù)f(x)=ex-ax-1的定義域為(0,+∞).
(1)設(shè)a=e,求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某動物數(shù)量y(只)與時間x(年)的關(guān)系為y=alog2(x+1),設(shè)第一年有100只,則到第七年它們發(fā)展到( )
A.300只
B.400只
C.500只
D.600只

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,四邊形ABCD的邊AB∥DC,AD∥BC.已知點A(﹣2,0),B(6,8),C(8,6),則D點的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案