某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí),取得最大值?

(1);(2)1.

解析試題分析:(1)將扇環(huán)面的兩段弧長(zhǎng)和直線段長(zhǎng)分別用表示后,利用其和為30列式,再解出即可;(2)將花壇的面積和裝飾總費(fèi)用分別用表示,再利用第(1)問(wèn)的結(jié)果消去,從而可得到關(guān)于函數(shù),然后可利用導(dǎo)數(shù)或基本等式求其最小值,并確定取最小值時(shí)的值.
試題解析:(1)由弧長(zhǎng)計(jì)算及扇環(huán)面的周長(zhǎng)為30米,得
,所以,    4分
(2) 花壇的面積為.     7分
裝飾總費(fèi)用為,                9分
所以花壇的面積與裝飾總費(fèi)用的比,     11分
,則,當(dāng)且僅當(dāng)t=18時(shí)取等號(hào),此時(shí)
答:當(dāng)x=1時(shí),花壇的面積與裝飾總費(fèi)用的比最大.           14分
(注:對(duì)也可以通過(guò)求導(dǎo),研究單調(diào)性求最值,同樣給分)
考點(diǎn):函數(shù)在實(shí)際問(wèn)題中的應(yīng)用,基本不等式的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某化工企業(yè)2012年底投入100萬(wàn)元購(gòu)入一套污水處理設(shè)備.該設(shè)備每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬(wàn)元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬(wàn)元,由于設(shè)備老化,以后每年的維護(hù)費(fèi)都比上一年增加2萬(wàn)元.設(shè)該企業(yè)使用該設(shè)備x年的年平均污水處理費(fèi)用為y(單元:萬(wàn)元).
(1)用x表示y;
(2)當(dāng)該企業(yè)的年平均污水處理費(fèi)用最低時(shí),企業(yè)需重新更換新的污水處理設(shè)備.求該企業(yè)幾年后需要重新更換新的污水處理設(shè)備.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)定義在區(qū)間都有不恒為零.
(1)求的值;
(2)若求證:;
(3)若求證:上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

兩城相距,在兩地之間距地建一核電站給兩城供電.為保證城市安全,核電站距城市距離不得少于.已知供電費(fèi)用(元)與供電距離()的平方和供電量(億度)之積成正比,比例系數(shù),若城供電量為億度/月,城為億度/月.
(Ⅰ)把月供電總費(fèi)用表示成的函數(shù),并求定義域;
(Ⅱ)核電站建在距城多遠(yuǎn),才能使供電費(fèi)用最小,最小費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) .
(1)判斷函數(shù)的單調(diào)性并用定義證明;
(2)令,求在區(qū)間的最大值的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,函數(shù),,記
(1)求函數(shù)的定義域及其零點(diǎn);
(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍;
(2)若函數(shù)在區(qū)間上各有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,,其中.函數(shù)在區(qū)間上有最大值為4,設(shè).
(1)求實(shí)數(shù)的值;
(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本為,當(dāng)年產(chǎn)量不足80千件時(shí),(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案