【題目】設(shè)函數(shù),函數(shù),其中為常數(shù)且,令函數(shù).

(1)求函數(shù)的表達(dá)式,并求其定義域;

(2)當(dāng),求函數(shù)的值域;

(3)是否存在自然數(shù),使得函數(shù)的值域恰為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.

【答案】1,其定義域為[0a];(2)值域為 ;(3a的集合為{1,2,34,5,6,7,89}

【解析】

1)求出函數(shù)fx)的表達(dá)式,由gx),hx)的定義域求解函數(shù)fx)的定義域.

2)當(dāng)時,函數(shù)fx)的定義域即可確定,利用換元和基本不等式求最值即可;

3)結(jié)合(2)利用函數(shù)的值域求出關(guān)于a的表達(dá)式,求出a的范圍即可.

1,其定義域為[0,a];

2)令,則x=(t12

[12]上遞減,在[2,+∞)上遞增,

上遞增,即此時fx)的值域為

3)令,則x=(t12

[1,2]上遞減,在[2,+∞)上遞增,

y[12]上遞增,上遞減,

t2的最大值為

a1,又1t2

∴由fx)的值域恰為,由,解得:t1t4

fx)的值域恰為時,

所求a的集合為{1,23,4,56,7,8,9}

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為數(shù)列的前項和,已知

(1)求

(2)記數(shù)列的前項和為,若對于任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運(yùn)動員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著科學(xué)技術(shù)迅猛發(fā)展,國內(nèi)有實力的企業(yè)紛紛進(jìn)行海外布局,如在智能手機(jī)行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機(jī)公司一直默默拓展海外市場,在海外設(shè)多個分支機(jī)構(gòu)需要國內(nèi)公司外派大量80后、90后中青年員工.該企業(yè)為了解這兩個年齡層員工對是否愿意接受外派工作的態(tài)度隨機(jī)調(diào)查了100位員工,得到數(shù)據(jù)如下表:

愿意接受外派人數(shù)

不愿意接受外派人數(shù)

合計

80后

20

20

40

90后

40

20

60

合計

60

40

100

(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),判斷能否在犯錯誤的概率不超過0.1的前提下認(rèn)為“是否愿意接受外派與年齡層有關(guān)”,并說明理由;

(Ⅱ)該公司選派12人參觀駐海外分支機(jī)構(gòu)的交流體驗活動,在參與調(diào)查的80后員工中用分層抽樣方法抽出6名,組成80后組,在參與調(diào)查的90后員工中,也用分層抽樣方法抽出6名,組成90后組

①求這12 人中,80后組90后組愿意接受外派的人數(shù)各有多少?

②為方便交流,在80后組、90后組中各選出3人進(jìn)行交流,記在80后組中選到愿意接受外派的人數(shù)為,在90 后組中選到愿意接受外派的人數(shù)為,求的概率.

參考數(shù)據(jù):

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,為線段的中點,如圖1,沿折起至,使,如圖2所示.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù)的最小值為.

1)求的解析式

2)畫出函數(shù)的大致圖形

3)求函數(shù)的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃明年用不超過6千萬元的資金投資于本地養(yǎng)魚場和遠(yuǎn)洋捕撈隊.經(jīng)過對本地養(yǎng)魚場年利潤率的調(diào)研,其結(jié)果是:年利潤虧損10%的概率為0.2,年利潤獲利30%的概率為0.4,年利潤獲利50%的概率為0.4,對遠(yuǎn)洋捕撈隊的調(diào)研結(jié)果是:年利潤獲利為60%的概率為0.7,持平的概率為0.2,年利潤虧損20%的可能性為0.1. 為確保本地的鮮魚供應(yīng),市政府要求該公司對遠(yuǎn)洋捕撈隊的投資不得高于本地養(yǎng)魚場的投資的2倍.根據(jù)調(diào)研數(shù)據(jù),該公司如何分配投資金額,明年兩個項目的利潤之和最大值為_________千萬.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)零點,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)已知點是曲線上一點,點是曲線上一點,的最小值為,求實數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案