【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是 (為參數(shù)).

(1)將曲線的極坐標方程化為直角坐標方程;

(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

【答案】(1) .(2) .

【解析】試題分析:

本題(1)可以利用極坐標與直角坐標 互化的化式,求出曲線C的直角坐標方程;(2)先將直l的參數(shù)方程是是參數(shù))化成普通方程,再求出弦心距,利用勾股定理求出弦長,也可以直接利用直線的參數(shù)方程和圓的普通方程聯(lián)解,求出對應的參數(shù) 的關系式,利用,得到的三角方程,解方程得到的值,要注意角范圍.

試題解析:

(1)由

, , ,

∴曲線的直角坐標方程為,

;

(2)將代入圓的方程得.

化簡得

兩點對應的參數(shù)分別為,則

,

.

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取人對共享產(chǎn)品對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系?

Ⅱ)為了答謝參與問卷調(diào)查的人員,該公司對參與本次問卷調(diào)查的人員隨機發(fā)放張超市的購物券,購物券金額以及發(fā)放的概率如下:

現(xiàn)有甲、乙兩人領取了購物券,記兩人領取的購物券的總金額為,求的分布列和數(shù)學期望.

參考公式 .

臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級共有1000名學生,其中男生650人,女生350人,為了調(diào)查學生周末的休閑方式,用分層抽樣的方法抽查了200名學生.

)完成下面的列聯(lián)表;

不喜歡運動

喜歡運動

合計

女生

50

男生

合計

100

200

)在抽取的樣本中,調(diào)查喜歡運動女生的運動時間,發(fā)現(xiàn)她們的運動時間介于30分鐘到90分鐘之間,右圖是測量結果的頻率分布直方圖,若從區(qū)間段的所有女生中隨機抽取兩名女生,求她們的運動時間在同一區(qū)間段的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,拋物線上在第一象限內(nèi)的點到焦點的距離為,曲線在點處的切線交軸于點,直線經(jīng)過點且垂直于

(Ⅰ)求點的坐標

(Ⅱ)設不經(jīng)過點的動直線交曲線于點于點若直線,,的斜率依次成等差數(shù)列,試問是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是 (為參數(shù)).

(1)將曲線的極坐標方程化為直角坐標方程;

(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在橢圓上,且橢圓的離心率為.

(1)求橢圓的方程;

(2)若為橢圓的右頂點,點是橢圓上不同的兩點(均異于)且滿足直線斜率之積為.試判斷直線是否過定點,若是,求出定點坐標,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點為拋物線的焦點,點為點關于原點的對稱點,點在拋物線上,則下列說法錯誤的是( )

A. 使得為等腰三角形的點有且僅有4個

B. 使得為直角三角形的點有且僅有4個

C. 使得的點有且僅有4個

D. 使得的點有且僅有4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于的不等式(其中.

1)當時,求不等式的解集;

2)若不等式在內(nèi)有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐 中, .

(1)證明:頂點在底面的射影在的平分線上;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案