定義在非零實數(shù)集上的奇函數(shù)f(x)在(-∞,0)上是減函數(shù),且f(-3)=0.
(1)求f(3)的值;
(2)求滿足f(x)>0的x的集合.
分析:(1)根據(jù)函數(shù)奇偶性可得f(-x)=-f(x),從而f(3)=-f(-3)即可求出;
(2)先根據(jù)奇函數(shù)的性質判斷出在(0,+∞)上的單調性,討論x的取值,分別建立不等關系,然后根據(jù)單調性即可求出滿足條件的x.
解答:解:(1)∵f(x)是奇函數(shù)
∴f(-3)=-f(3)=0即f(3)=0
(2)
x>0
f(x)>f(3)
x<0
f(x)>f(-3)

結合奇函數(shù)的性質可知函數(shù)f(x)在(-∞,0)上是減函數(shù),在(0,+∞)上是減函數(shù)
∴f(x)>0的x的集合為:(-∞,-3)∪(0,3).
點評:本題主要考查了函數(shù)恒成立問題,以及函數(shù)單調性的應用和奇偶性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在非零實數(shù)集上的函數(shù)f(x)滿足f(xy)=f(x)+f(y),且f(x)是區(qū)間(0,+∞)上的遞增函數(shù)
(1)求f(1),f(-1)的值;
(2)求證:f(-x)=f(x);
(3)解關于x的不等式:f(2)+f(x-
12
)≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在非零實數(shù)集上的函數(shù)f(x)對任意非零實數(shù)x,y恒有f(xy)=f(x)+f(y),當x∈(0,+∞)時,f(x)為增函數(shù),
且f(2)=1.
(1)求f(1),f(-1)的值,并求證:f(x)為偶函數(shù);
(2)判斷并證明f(x)在(-∞,0)的單調性;
(3)解不等式:f(x)-f(x-2)>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為定義在非零實數(shù)集上的可導函數(shù),且f(x)>xf′(x)在定義域上恒成立,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在非零實數(shù)集上的函數(shù)f(x)滿足關系式f(xy)=f(x)+f(y)且f(x)在區(qū)間(0,+∞)上是增函數(shù)
(1)判斷函數(shù)f(x)的奇偶性并證明你的結論;
(2)解不等式f(x)+f(x-
12
)≤0.

查看答案和解析>>

同步練習冊答案