【題目】已知函數(shù),其中為實數(shù),為自然對數(shù)的底數(shù).

1)求函數(shù)的單調區(qū)間;

2)是否存在實數(shù),使得對任意給定的,在區(qū)間上總存在三個不同的,使得成立?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

【答案】1)單調遞增區(qū)間為,單調遞減區(qū)間為2)存在,

【解析】

1)先對函數(shù)求導,然后結合導數(shù)與單調性的關系即可求解,

2)結合(1)的討論,對進行分類討論,即可求解.

解:(1

.

,即時,.

.

時,;當時,.

,即時,.

.

時,;當時,.

函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為.

2)由(1)可知,函數(shù)有兩個極小值,,

存在一個極大值,另外.

對于函數(shù).

假設存在滿足題意的實數(shù).

時,,滿足題意.

時,.

由題意,解得.

時,.

由題意,解得.

綜上,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱柱中,底面邊長為,側棱長為4,分別為棱、的中點,

1)求直線與平面所成角的大;

2)求點到平面的距離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的左右焦點分別為,,橢圓右頂點為,點在圓.

1)求橢圓的標準方程;

2)點在橢圓上,且位于第四象限,點在圓上,且位于第一象限,已知,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當,證明;

2)如果函數(shù)有兩個極值點,),且恒成立,求實數(shù)k的取值范圍.

3)當時,求函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),為常數(shù),當時,有三個極值點,,(其中).

(1)求實數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,點在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,直線分別與軸交于點,在軸上,是否存在點,使得無論非零實數(shù)怎樣變化,總有為直角?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線和動直線.直線交拋物線兩點,拋物線處的切線的交點為.

1)當時,求以為直徑的圓的方程;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由國家統(tǒng)計局提供的數(shù)據(jù)可知,2012年至2018年中國居民人均可支配收入(單位:萬元)的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

年份代號

1

2

3

4

5

6

7

人均可支配收入

1.65

1.83

2.01

2.19

2.38

2.59

2.82

1)求關于的線性回歸方程(系數(shù)精確到0.01);

2)利用(1)中的回歸方程,分析2012年至2018年中國居民人均可支配收入的變化情況,并預測2019年中國居民人均可支配收入

附注:參考數(shù)據(jù):,

參考公式:回歸直線方程的斜率和截距的最小二乘估計公式分別為: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調區(qū)間;

(2)若不等式時恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案