有一個不透明的袋子,裝有4個完全相同的小球,球上分別編有數(shù)字1,2,3,4,
(1)若逐個不放回取球兩次,求第一次取到球的編號為偶數(shù)且兩個球的編號之和能被3整除的概率;
(2)若先從袋中隨機取一個球,該球的編號為a,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為b,求直線ax+by+1=0與圓有公共點的概率.

(1);(2)

解析試題分析:能理解放回抽樣和不放回抽樣中基本事件總數(shù)的變化是解該題的關鍵,(1)定義事件A=“第一次取到球的編號為偶數(shù)且兩個球的編號之和能被3整除”,列舉出逐個不放回取球兩次的基本事件總數(shù)及第一次取到球的編號為偶數(shù)且兩球編號能被3整除包含的基本事件數(shù),代入古典概型概率的計算公式即可;
(2)定義事件B=“直線與圓有公共點”,列出基本事件總數(shù)及直線與圓有公共點包含的基本事件數(shù),代入古典概型的概率計算公式即可.
試題解析:(1)記A=“第一次取到球的編號為偶數(shù)且兩個球的編號之和能被3整除”,用表示先后兩次不放回取球所構成的基本事件,則基本事件有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12個,事件A包含的基本事件有(2,1),(2,4),(4,2)共三個,所以;
(2)記B=“直線與圓有公共點”,基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16個,依題意,即,其中事件B包含的基本事件有(1,4),(2,4),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共8個,∴
考點:1、直線和圓的位置關系;2、古典概型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知圓經(jīng)過坐標原點和點,且圓心在軸上.
(1)求圓的方程;
(2)設直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓C:,其中為實常數(shù).
(1)若直線l:被圓C截得的弦長為2,求的值;
(2)設點,0為坐標原點,若圓C上存在點M,使|MA|="2" |MO|,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,直線,。
(1)證明:不論取什么實數(shù),直線與圓恒交于兩點;
(2)求直線被圓截得的弦長最小時的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點是圓上的點
(1)求的取值范圍.
(2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關系;
(2)求直線m的方程,使直線m被圓C1截得的弦長為4,與圓C截得的弦長是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知動點M到定點與到定點的距離之比為3.
(Ⅰ)求動點M的軌跡C的方程,并指明曲線C的軌跡;
(Ⅱ)設直線,若曲線C上恰有兩個點到直線的距離為1,
求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓滿足以下三個條件:(1)圓心在直線上,(2)與直線相切,(3)截直線所得弦長為6。求圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知⊙和點.

(Ⅰ)過點向⊙引切線,求直線的方程;
(Ⅱ)求以點為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案