【題目】已知曲線C1 ,(t為參數(shù))曲線C2 +y2=4.
(1)在同一平面直角坐標系中,將曲線C2上的點按坐標變換y′=yx,后得到曲線C′.求曲線C′的普通方程,并寫出它的參數(shù)方程;
(2)若C1上的點P對應的參數(shù)為t= ,Q為C′上的動點,求PQ中點M到直線C3 (t為參數(shù))的距離的最小值.

【答案】
(1)解:由 得到

將①代入曲線C2 +y2=4.得 +(y′)2=4,即(x′)2+(y′)2=4.

因此橢圓 +y2=4經(jīng)伸縮變換后得到的曲線方程是x2+y2=4.

它的參數(shù)方程為


(2)解:當t=π/2時,P(﹣4,4),Q(2cosθ,2sinθ),故M(﹣2+cosθ,2+sinθ)

曲線C3:為直線x﹣2y+8=0,

M到C3的距離d= |(﹣2+cosθ)﹣2(2+sinθ)+8|= |cosθ﹣2sinθ+2|= | cos(θ+α)+2|

從而tanα=2時d的最小值為 |﹣ +2|=


【解析】(1)由 得到 ,代入曲線C2 +y2=4.化簡可得橢圓 +y2=4經(jīng)伸縮變換后得到的曲線方程.利用平方關系可得它的參數(shù)方程.(2)當t= 時,P(﹣4,4),Q(2cosθ,2sinθ),故M(﹣2+cosθ,2+sinθ).曲線C3:為直線x﹣2y+8=0,利用點到直線的距離公式可得M到C3的距離d= | cos(θ+α)+2|,利用三角函數(shù)的單調(diào)性即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在無窮數(shù)列中,,對于任意,都有,,設,記使得成立的的最大值為

)設數(shù)列,,,,寫出,的值.

)若為等比數(shù)列,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】古希臘杰出的數(shù)學家丟番圖的墓碑上有這樣一首詩:

這是一座古墓,里面安葬著丟番圖.

請你告訴我,丟番圖的壽數(shù)幾何?

他的童年占去了一生的六分之一,

接著十二分之一是少年時期,

又過了七分之一的時光,他找到了自己的終身伴侶.

五年之后,婚姻之神賜給他一個兒子,

可是兒子不濟,只活到父親壽數(shù)的一半,就匆匆離去.

這對父親是一個沉重的打擊,

整整四年,為失去愛子而悲傷,

終于告別了數(shù)學,離開了人世.

試用循環(huán)結(jié)構(gòu),寫出算法分析和算法程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干個,其中標號為0的小球1,標號為1的小球1,標號為2的小球n.已知從袋子中隨機抽取1個小球,取到標號是2的小球的概率是.

(1)n的值;

(2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b.

記事件A表示a+b=2”,求事件A的概率;

在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件x2+y2>(a-b)2恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的圖象與軸交于點,周期是

(1)求函數(shù)解析式,并寫出函數(shù)圖象的對稱軸方程和對稱中心;

(2)已知點,點是該函數(shù)圖象上一點,點的中點,當 時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設矩形ABCD,以A、B為左右焦點,并且過C、D兩點的橢圓和雙曲線的離心率之積為(
A.
B.2
C.1
D.條件不夠,不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電子商務公司對10 000名網(wǎng)絡購物者2017年度的消費情況進行統(tǒng)計,發(fā)現(xiàn)消費金額(單位:萬元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖所示.

(1)直方圖中的a=_____;

(2)在這些購物者中,消費金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設X是一個離散型隨機變量,則下列不能成為X的概率分布列的一組數(shù)據(jù)是(
A.0, ,0,0,
B.0.1,0.2,0.3,0.4
C.p,1﹣p(0≤p≤1)
D. , ,…,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|1<2x<8},B={x| +1<0},C={x|a<x<a+1}.
(1)求集合UA∩B;
(2)若B∪C=B,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案