【題目】廣東佛山某學(xué)校參加暑假社會實(shí)踐活動知識競賽的學(xué)生中,得分在[80,90)中的有16人,得分在[90,100]中的有4人,用分層抽樣的方法從得分在[80,100]的學(xué)生中抽取一個容量為5的樣本,將該樣本看成一個整體,從中任意選取2人,則其中恰有1人分?jǐn)?shù)不低于90的概率為( )
A.
B.
C.
D.
【答案】C
【解析】解:根據(jù)分層抽樣原理,在[80,90)組中應(yīng)抽取的人數(shù)為 ,設(shè)為a,b,c,d,在[90,100]組中應(yīng)抽取1人,設(shè)為e,從5個人中任取2人,所有可能的組合為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10種情況,其中恰有1人分?jǐn)?shù)不低于90的情況有(a,e),(b,e),(c,e),(d,e)共4種,所以所求概率為 .
故答案為:C.
由分層抽樣可得在[80,90)組中應(yīng)抽取的人數(shù)為4人,設(shè)為a,b,c,d,在[90,100]組中應(yīng)抽取1人,從5個人中任取2人,用列舉法可得共有10種,其中恰有1人分?jǐn)?shù)不低于90的情況有4種,即所得概率。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+(1﹣x)ln(1﹣x),x∈(0,1).
(1)求f(x)的最小值;
(2)若a+b+c=1,a,b,c∈(0,1).求證:alna+blnb+clnc≥(a﹣2)ln2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線G:y2=2px(p>0)焦點(diǎn)F的直線l與拋物線G交于M、N兩點(diǎn)(M在x軸上方),滿足 , ,則以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,
(1)求證: ;
(2)當(dāng)x≥1時,f(x)≥lnx﹣a(x﹣1)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn , 滿足 .
(1)求a1及通項(xiàng)公式an;
(2)若 ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0),F(xiàn)為其焦點(diǎn),過點(diǎn)(4,0)作垂直于x軸的直線交拋物線于A,B兩點(diǎn),△ABF的周長為18.
(1)求拋物線的方程;
(2)過拋物線上的定點(diǎn) 作兩條關(guān)于直線y=p對稱的直線分別交拋物線于C,D兩點(diǎn),連接CD,判斷直線CD的斜率是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右頂點(diǎn)為 ,離心率為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過右焦點(diǎn)F且斜率不為0的動直線l與橢圓交于M,N兩點(diǎn),過M作直線x=a2的垂線,垂足為M1 , 求證:直線M1N過定點(diǎn),并求出定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=BC=CC1=2,AC=2 ,M是AC的中點(diǎn),則異面直線CB1與C1M所成角的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)A(0,1),B(2,﹣1),點(diǎn)C在雙曲線M: ﹣y2=1上,則使△ABC的面積為3的點(diǎn)C的個數(shù)為( 。
A.4
B.3
C.2
D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com