【題目】如圖,P是直線(xiàn)x=4上一動(dòng)點(diǎn),以P為圓心的圓Γ經(jīng)定點(diǎn)B(1,0),直線(xiàn)l是圓Γ在點(diǎn)B處的切線(xiàn),過(guò)A(﹣1,0)作圓Γ的兩條切線(xiàn)分別與l交于E,F(xiàn)兩點(diǎn).
(1)求證:|EA|+|EB|為定值;
(2)設(shè)直線(xiàn)l交直線(xiàn)x=4于點(diǎn)Q,證明:|EB||FQ|=|BF|EQ|.
【答案】
(1)證明:設(shè)AE切圓于M,直線(xiàn)x=4與x軸的交點(diǎn)為N,則EM=EB,
∴|EA|+|EB|=|AM|= = = =4為定值;
(2)證明:同理|FA|+|FB|=4,
∴E,F(xiàn)均在橢圓 =1上,
設(shè)直線(xiàn)EF的方程為x=my+1(m≠0),令x=4,yQ= ,
直線(xiàn)與橢圓方程聯(lián)立得(3m2+4)y2+6my﹣9=0,
設(shè)E(x1,y1),F(xiàn)(x2,y2),則y1+y2=﹣ ,y1y2=﹣
∵E,B,F(xiàn),Q在同一條直線(xiàn)上,
∴|EB||FQ|=|BF|EQ|等價(jià)于﹣y1 +y1y2=y2 ﹣y1y2,
∴2y1y2=(y1+y2) ,
代入y1+y2=﹣ ,y1y2=﹣ 成立,
∴|EB||FQ|=|BF|EQ|.
【解析】(1)設(shè)AE切圓于M,則EM=EB,即|EA|+|EB|=|AM|即可求出;
(2)先確定E,F(xiàn)均在橢圓上,設(shè)直線(xiàn)EF的方程為x=my+1(m≠0),聯(lián)立E,B,F(xiàn),Q在同一條直線(xiàn)上,即|EB||FQ|=|BF|EQ|等價(jià)于利用韋達(dá)定理,即可證明。
【考點(diǎn)精析】掌握直線(xiàn)與圓的三種位置關(guān)系是解答本題的根本,需要知道直線(xiàn)與圓有三種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線(xiàn)叫做圓的割線(xiàn);圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(-x)sin x-cos2x.
(1)求f(x)的最小正周期和最大值;
(2)討論f(x)在()上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)用五點(diǎn)法畫(huà)出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期、振幅、初相、對(duì)稱(chēng)軸;
(3)此函數(shù)圖象由y=sinx的圖象怎樣變換得到?(注:y軸上每一豎格長(zhǎng)為1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)x2=4y的焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)相交于A、B兩點(diǎn).
(1)設(shè)拋物線(xiàn)在A、B處的切線(xiàn)的交點(diǎn)為M,若點(diǎn)M的橫坐標(biāo)為2,求△ABM的外接圓方程.
(2)若直線(xiàn)l與橢圓 + =1的交點(diǎn)為C,D,問(wèn)是否存在這樣的直線(xiàn)l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式|x﹣a|<b的解集為{x|2<x<4}.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)設(shè)實(shí)數(shù)x,y,z 滿(mǎn)足 + + =1,求x,y,z的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年一交警統(tǒng)計(jì)了某路段過(guò)往車(chē)輛的車(chē)速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車(chē)速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次數(shù)y | 1 | 3 | 6 | 9 | 11 |
(Ⅰ)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程=x+;
(Ⅲ)試根據(jù)(Ⅱ)求出的線(xiàn)性回歸方程,預(yù)測(cè)在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車(chē)速達(dá)到110km/h時(shí),可能發(fā)生的交通事故次數(shù).
(附:b=,=-,其中,為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等差數(shù)列,且a3=-6,a6=0.
(1)求{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿(mǎn)足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿(mǎn)足,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿(mǎn)足,數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式 對(duì)一切n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)O在內(nèi),且滿(mǎn)足,設(shè)為的面積, 為的面積,則=________.
【答案】
【解析】由,可得:
延長(zhǎng)OA,OB,OC,使OD=2OA,OE=4OB,OF=3OC,
如圖所示:
∵2+3+4=,
∴,
即O是△DEF的重心,
故△DOE,△EOF,△DOF的面積相等,
不妨令它們的面積均為1,
則△AOB的面積為,△BOC的面積為,△AOC的面積為,
故三角形△AOB,△BOC,△AOC的面積之比依次為: : : =3:2:4,
.
故答案為: .
點(diǎn)睛:本題考查的知識(shí)點(diǎn)是三角形面積公式,三角形重心的性質(zhì),平面向量在幾何中的應(yīng)用,注意重要結(jié)論:點(diǎn)O在內(nèi),且滿(mǎn)足, 則三角形△AOB,△BOC,△AOC的面積之比依次為: .
【題型】填空題
【結(jié)束】
16
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,O為AD的中點(diǎn),射線(xiàn)OP從OA出發(fā),繞著點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)至OD,在旋轉(zhuǎn)的過(guò)程中,記為OP所經(jīng)過(guò)的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對(duì)于函數(shù)有以下三個(gè)結(jié)論:
①;
②任意,都有;
③任意且,都有.
其中正確結(jié)論的序號(hào)是__________. (把所有正確結(jié)論的序號(hào)都填上).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com