【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC為等邊三角形,AA1=AB=6,D為AC的中點.
(1)求證:直線AB1∥平面BC1D;
(2)求證:平面BC1D⊥平面ACC1A1;
(3)求三棱錐C﹣BC1D的體積.
【答案】
(1)證明:如圖所示,
連接B1C交BC1于O,連接OD,
因為四邊形BCC1B1是平行四邊形,
所以點O為B1C的中點,
又因為D為AC的中點,
所以O(shè)D為△AB1C的中位線,
所以O(shè)D∥B1A,
又OD平面C1BD,AB1平面C1BD,
所以AB1∥平面C1BD.
(2)證明:因為△ABC是等邊三角形,D為AC的中點,
所以BD⊥AC,
又因為AA1⊥底面ABC,
所以AA1⊥BD,
根據(jù)線面垂直的判定定理得BD⊥平面A1ACC1,
又因為BD平面C1BD,
所以平面C1BD⊥平面A1ACC1
(3)解:由(2)知,△ABC中,BD⊥AC,BD=BCsin60°=3 ,
∴S△BCD= ×3×3 = ,
∴ = = 6=9 .
【解析】1、根據(jù)已知條件作輔助線:連接B1C交BC1于O,連接OD,由題意可得OD∥B1A,利用線面平行的判定定理可得證。
2、利用線面垂直的性質(zhì)定理和判定定理可得證。
3、利用等體積法轉(zhuǎn)化頂點和底面可求出體積。
【考點精析】利用直線與平面平行的判定和平面與平面垂直的判定對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意的正整數(shù)n都有2Sn=6﹣an , 數(shù)列{bn}滿足b1=2,且對任意的正整數(shù)n都有 ,且數(shù)列 的前n項和Tn<m對一切n∈N*恒成立,則實數(shù)m的小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知( +x2)2n的展開式中各項系數(shù)的和比(3x﹣1)n的展開式中二項式系數(shù)的和大992,求(2x﹣ )2n的展開式中:
(1)第10項
(2)常數(shù)項;
(3)系數(shù)的絕對值最大的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l經(jīng)過點M(﹣3,﹣3),且圓x2+y2+4y﹣21=0的圓心到l的距離為 .
(1)求直線l被該圓所截得的弦長;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=x3﹣ax在(﹣∞,﹣1]上是單調(diào)函數(shù),則a的取值范圍是( )
A.(3,+∞)
B.[3,+∞)
C.(﹣∞,3)
D.(﹣∞,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線C:x2=2py(p>0),其焦點為F,C上的一點M(4,m)滿足|MF|=4.
(1)求拋物線C的標準方程;
(2)過點E(﹣1,0)作不經(jīng)過原點的兩條直線EA,EB分別與拋物線C和圓F:x2+(y﹣2)2=4相切于點A,B,試判斷直線AB是否經(jīng)過焦點F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2ex﹣1+ax3+bx2 , 已知x=﹣2和x=1為f(x)的極值點.
(1)求a和b的值;
(2)討論f(x)的單調(diào)性;
(3)設(shè)g(x)= x3﹣x2 , 試比較f(x)與g(x)的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(n)=1+ + + +…+ ,g(n)= ﹣ ,n∈N* .
(1)當n=1,2,3時,試比較f(n)與g(n)的大小關(guān)系;
(2)猜想f(n)與g(n)的大小關(guān)系,并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com