(2012•包頭三模)若曲線y=x2在點(a,a2)(a>0)處的切線與兩個坐標(biāo)軸圍成的三角形的面積為2,則a等于
2
2
分析:利用導(dǎo)數(shù)得出切線的斜率,進而得出切線的方程,求出切線與兩坐標(biāo)軸的交點,再利用三角形的面積即可得出答案.
解答:解:∵f(x)=2x,∴f(a)=2a,即為切線的斜率,
∴切線的方程:y-a2=2a(x-a),即為y=2ax-a2
切線與兩個坐標(biāo)軸的交點為A(
a
2
,0)
,B(0,-a2).
∴△OAB的面積S=
1
2
×a2×
a
2
=
a3
4

又已知切線與兩個坐標(biāo)軸圍成的三角形的面積為2,
a3
4
=2
(a>0),解得a=2.
故答案為2.
點評:利用導(dǎo)數(shù)得出切線的斜率并寫出切線的方程是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭三模)設(shè)x,y滿足線性約束條件
x-2y+3≥0
2x-3y+4≤0
y≥0
,若目標(biāo)函數(shù)z=ax+by(其中a>0,b>0)的最大值為3,則
1
a
+
2
b
的最小值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭三模)函數(shù)y=sin(ωx+φ)(ω>0且|φ|<
π
2
)
在區(qū)間[
π
6
,
3
]
上單調(diào)遞減,且函數(shù)值從1減小到-1,那么此函數(shù)圖象與y軸交點的縱坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭三模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F(2,0),M為橢圓的上頂點,O為坐標(biāo)原點,且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=8,證明:直線AB過定點(-
1
2
 , -2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•包頭三模)設(shè)函數(shù)f(x)=xex,g(x)=ax2+x
(I)若f(x)與g(x)具有完全相同的單調(diào)區(qū)間,求a的值;
(Ⅱ)若當(dāng)x≥0時恒有f(x)≥g(x),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案